Suppr超能文献

心电图特征改善了中东队列中2型糖尿病发病的多模态深度学习预测。

ECG features improve multimodal deep learning prediction of incident T2DM in a Middle Eastern cohort.

作者信息

Mohsen Farida, Safa Ali, Shah Zubair

机构信息

College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar.

出版信息

Sci Rep. 2025 Jul 25;15(1):27164. doi: 10.1038/s41598-025-12633-z.

Abstract

Type 2 Diabetes Mellitus (T2DM) remains a significant global health challenge, underscoring the need for early and accurate risk prediction tools to enable timely interventions. This study introduces ECG-DiaNet, a multimodal deep learning model that integrates electrocardiogram (ECG) features with established clinical risk factors (CRFs) to improve the prediction of T2DM onset. Using data from the Qatar Biobank (QBB), we compared ECG-DiaNet against unimodal models based solely on ECG or CRFs. A development cohort (n = 2043) was utilized for model training and internal validation, while a separate longitudinal cohort (n = 395) with a median five-year follow-up served as the test set. ECG-DiaNet demonstrated superior predictive performance, achieving a higher area under the receiver operating characteristic curve (AUROC) compared to the CRF-only model (0.845vs.0.8217), which was statistically significant based on the DeLong test (p < 0.001), thus highlighting the added predictive value of incorporating ECG signals. Reclassification metrics reinforced these improvements, with a significant Net Reclassification Improvement (NRI = 0.0153,p < 0.001) and Integrated Discrimination Improvement (IDI = 0.0482,p = 0.0099), confirming the enhanced risk stratification. Furthermore, stratifying participants into Low-, Medium-, and High-risk categories revealed that ECG-DiaNet achieved a higher positive predictive value (PPV) in the high-risk group compared to CRF-only models. These findings, together with the non-invasive nature and wide accessibility of ECG technology, suggest the potential of ECG-DiaNet for clinical implementation. However, further validation using larger and more diverse datasets is needed to improve generalizability.

摘要

2型糖尿病(T2DM)仍然是一项重大的全球健康挑战,这凸显了需要早期且准确的风险预测工具以便能够及时进行干预。本研究引入了ECG-DiaNet,这是一种多模态深度学习模型,它将心电图(ECG)特征与既定的临床风险因素(CRF)相结合,以改善对T2DM发病的预测。利用来自卡塔尔生物银行(QBB)的数据,我们将ECG-DiaNet与仅基于ECG或CRF的单模态模型进行了比较。一个开发队列(n = 2043)用于模型训练和内部验证,而一个单独的具有五年中位数随访时间的纵向队列(n = 395)用作测试集。ECG-DiaNet表现出卓越的预测性能,与仅使用CRF的模型相比,其在受试者操作特征曲线下面积(AUROC)更高(0.845对0.8217),基于德龙检验,这具有统计学意义(p < 0.001),从而突出了纳入ECG信号所增加的预测价值。重新分类指标强化了这些改进,具有显著的净重新分类改善(NRI = 0.0153,p < 0.001)和综合判别改善(IDI = 0.0482,p = 0.0099),证实了风险分层的增强。此外,将参与者分为低、中、高风险类别显示,与仅使用CRF的模型相比,ECG-DiaNet在高风险组中实现了更高的阳性预测值(PPV)。这些发现,连同ECG技术的非侵入性本质和广泛可及性,表明了ECG-DiaNet在临床应用中的潜力。然而,需要使用更大且更多样化的数据集进行进一步验证以提高可推广性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa46/12297302/07ce33b6ace7/41598_2025_12633_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验