Suppr超能文献

基于智能手机图像的人工智能驱动的皮肤癌检测:一种使用视觉Transformer(ViT)、自适应阈值处理、黑帽变换和极端梯度提升(XGBoost)的混合模型。

AI-driven skin cancer detection from smartphone images: A hybrid model using ViT, adaptive thresholding, black-hat transformation, and XGBoost.

作者信息

El Mertahi Adil, Ezzine Hind, Douzi Samira, Douzi Khadija

机构信息

LIM Laboratory, FSTM, Hassan II University in Casablanca, Morocco.

IPSS Laboratory, FSR, Mohammed V University in Rabat, Morocco.

出版信息

PLoS One. 2025 Jul 28;20(7):e0328402. doi: 10.1371/journal.pone.0328402. eCollection 2025.

Abstract

Skin cancer is a significant global public health issue, with millions of new cases identified each year. Recent breakthroughs in artificial intelligence, especially deep learning, possess considerable potential to enhance the accuracy and efficiency of screening. This study proposes an approach that employs smartphone images, which are preprocessed using adaptive learning and Black-Hat transformation. ViT is utilized for feature extraction, and a stacking model is constructed employing these features in conjunction with image-related variables, like patient age and sex, for final classification. The model's efficacy in identifying cancer-associated skin diseases was evaluated across six categories of skin lesions: actinic keratosis, basal cell carcinoma, melanoma, nevus, squamous cell carcinoma, and seborrheic keratosis. The suggested model attained an overall accuracy of 97.61%, with a PVV of 96.88%, a recall of 97.63%, and an F1 score of 97.19%, so illustrating its efficacy in detecting malignant skin lesions. This method could greatly aid dermatologists by enhancing diagnostic sensitivity and specificity, reducing delays in identifying the most suspicious lesions, and ultimately reaching more patients in need of timely screenings and patient care, thus saving lives.

摘要

皮肤癌是一个重大的全球公共卫生问题,每年有数百万人被确诊为新病例。人工智能领域的最新突破,尤其是深度学习,在提高筛查的准确性和效率方面具有巨大潜力。本研究提出了一种利用智能手机图像的方法,这些图像通过自适应学习和黑帽变换进行预处理。视觉Transformer(ViT)用于特征提取,并构建一个堆叠模型,将这些特征与患者年龄和性别等图像相关变量结合起来进行最终分类。该模型在识别与癌症相关的皮肤疾病方面的有效性在六种皮肤病变类型中进行了评估:光化性角化病、基底细胞癌、黑色素瘤、痣、鳞状细胞癌和脂溢性角化病。所建议的模型总体准确率达到97.61%,阳性预测值为96.88%,召回率为97.63%,F1分数为97.19%,从而证明了其在检测恶性皮肤病变方面的有效性。这种方法可以通过提高诊断的敏感性和特异性、减少识别最可疑病变的延迟,并最终惠及更多需要及时筛查和患者护理的患者,从而挽救生命,极大地帮助皮肤科医生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验