Harlow Leander, Ovchinnikova Katja, James Mark
UHI Shetland, Port Arthur, Scalloway, Shetland, United Kingdom.
Department for Biomedical Research, University of Bern, Bern, Switzerland.
PLoS One. 2025 Jul 28;20(7):e0327824. doi: 10.1371/journal.pone.0327824. eCollection 2025.
The Great Atlantic scallop, or King scallop (Pecten maximus), ranks third in value after mackerel and Nephrops in UK fisheries. Its landings have surged over recent decades, making it the UK's fastest-growing fishery. Scallop stock assessments, crucial for sustainable fisheries management, traditionally rely on fisheries surveys, including underwater imaging and dredge sampling. Data on areas that contain scallops but not fishable using dredges is lacking. Dredge sampling is also potentially destructive. Remote data collection using drop down cameras and towed video are used, but there are few tools available to analyse these data automatically. P. maximus are usually recessed in fine sand and gravel habitats making image identification challenging. This study explores the potential of Artificial Intelligence (AI), specifically the NetHarn model from the VIAME toolkit, to identify and count scallops from underwater video transects. The research utilises diverse video footage from NatureScot, captured with custom camera systems (DDV and miniDDV), providing varied habitat, image quality, and camera specifications. Previous AI studies of this species artificially placed scallops on the seabed and are not representative of natural presentation. This research applies the same AI model to survey images featuring scallops in their natural habitat. Results showed moderate performance of the NetHarn model, achieving an F1 score of 0.44 and a mean Average Precision (mAP) of 0.41 when classifying scallops into three categories: king, queen, and dead. Model performance varied across geographic locations, camera platforms, and habitat types, with challenges including blurred images and mislabelling. The study emphasises the need for improved data acquisition, standardised camera systems, and larger annotated datasets to enhance AI model performance. Despite moderate results, this research highlights AI's potential for automating estimation of scallop stock abundance and marine habitat monitoring. Future efforts should focus on addressing image quality issues, increasing sample sizes, and optimising data collection for enhanced marine conservation and fisheries management.
大西洋大扇贝,即王扇贝(Pecten maximus),在英国渔业中的价值仅次于鲭鱼和海螯虾,位列第三。近几十年来,其上岸量激增,成为英国增长最快的渔业品种。扇贝种群评估对于可持续渔业管理至关重要,传统上依赖渔业调查,包括水下成像和拖网采样。然而,对于那些有扇贝但无法用拖网捕捞的区域,缺乏相关数据。拖网采样也可能具有破坏性。虽然使用了下拉式相机和拖曳式视频进行远程数据收集,但自动分析这些数据的工具却很少。王扇贝通常隐藏在细沙和砾石栖息地中,这使得图像识别具有挑战性。本研究探讨了人工智能(AI)的潜力,特别是来自VIAME工具包的NetHarn模型,用于从水下视频断面中识别和计数扇贝。该研究利用了来自NatureScot的各种视频片段,这些片段是用定制的摄像系统(DDV和miniDDV)拍摄的,提供了不同的栖息地、图像质量和相机规格。此前对该物种的人工智能研究是将扇贝人工放置在海床上,并不代表自然状态。本研究将相同的人工智能模型应用于在自然栖息地中拍摄的有扇贝的调查图像。结果显示NetHarn模型的表现一般,在将扇贝分为王扇贝、皇后扇贝和死扇贝三类时F1分数为0.44,平均平均精度(mAP)为0.41。模型性能因地理位置、相机平台和栖息地类型而异,面临的挑战包括图像模糊和标签错误。该研究强调需要改进数据采集、标准化相机系统以及更大的带注释数据集,以提高人工智能模型的性能。尽管结果一般,但这项研究凸显了人工智能在自动估计扇贝种群数量和海洋栖息地监测方面的潜力。未来的工作应集中在解决图像质量问题、增加样本量以及优化数据收集,以加强海洋保护和渔业管理。