Suppr超能文献

老年脑小血管疾病患者的步态障碍:使用智能手机传感器和视频分析的混合方法研究

Gait Disturbances in Older Adults With Cerebral Small Vessel Disease: Mixed Methods Study Using Smartphone Sensors and Video Analysis.

作者信息

Lai Xiaojun, Qiao Li-Yan, Rau Pei-Luen Patrick, Liu Yankuan

机构信息

Department of Industrial Engineering, Tsinghua University, Beijing, China.

Department of Neurology, Yuquan Hospital of Tsinghua University, No. 5 Shijingshan Road, Shijingshan District, Beijing, 100040, China, 86 88257755.

出版信息

JMIR Form Res. 2025 Jul 28;9:e58864. doi: 10.2196/58864.

Abstract

BACKGROUND

Cerebral small vessel disease (CSVD) significantly impacts motor functions, particularly gait dynamics. However, its analysis often lacks the integration of comprehensive tools that capture the multifaceted nature of gait disturbances. Traditional methods may not fully address the complexity of CSVD's impact on gait, underscoring the need for a detailed exploration of gait characteristics through advanced technological means.

OBJECTIVE

This study aims to identify the distinct gait patterns and postural adaptations present in patients with CSVD compared to a healthy older population, using an integrative analysis combining sensor and video data to provide a holistic understanding of gait dynamics in CSVD.

METHODS

This study involved 90 participants older than 50 years (mean age 68.85, SD 9.74 years; 47 males and 43 females), with 24 categorized as normal controls (mean age 66.42, SD 7.51 years) and 66 diagnosed with CSVD (mean age 69.74, SD 10.37 years). Participants performed three walking tasks: normal walking, dual-task walking (with concurrent mental arithmetic), and fast walking. Gait parameters were collected through video data for image posture parameters using the OpenPose BODY_25 key point model, and the "Pocket Gait Test" smartphone app for sensor-based parameters sampled at approximately 40 Hz. Data analysis included 5 sensor-based parameters (step frequency, root mean square (RMS), step variability, step regularity, and step symmetry) and 6 key video-based parameters (including knee angle, ankle angle, elbow angle, body trunk angles, and head posture).

RESULTS

Among the 29 participants with complete sensor and video data (10 normal controls and 19 patients with CSVD), significant differences were observed in step regularity (normal walking: mean 0.76, SD 0.09 vs mean 0.61, SD 0.25; P<.003 and dual-task: mean 0.74, SD 0.13 vs mean 0.57 SD 0.24; P<.005), RMS (normal walking: mean 1.64, SD 0.45 vs mean 1.43, SD 0.42; P<.006), and forward head posture angles (head-to-body angle during normal walking: mean 132.96, SD 7.78 vs mean 128.07, SD 7.99; P<.02 and head-to-ground angle: mean 134.11, SD 8.28 vs mean 128.40, SD 9.75; P<.008) between the CSVD and control groups. The CSVD group exhibited a more pronounced forward head posture across all walking tasks, with the greatest difference observed during dual-task walking (head-to-ground angle: mean 134.43, SD 8.29 vs mean 125.02, SD 8.42; P<.02).

CONCLUSIONS

The study provides compelling evidence of distinct gait disturbances in patients with CSVD, characterized by reduced step regularity (15%-23% lower than controls), altered acceleration patterns, and significant postural adaptations, particularly forward head positioning (4°-7° more pronounced than controls). These quantifiable differences, detectable through accessible smartphone and video technology, offer potential biomarkers for early CSVD detection and monitoring. The integration of sensor and video analysis provides a more comprehensive assessment approach that could be implemented in both clinical and home settings for longitudinal monitoring of disease progression and rehabilitation outcomes.

摘要

背景

脑小血管病(CSVD)对运动功能有显著影响,尤其是步态动力学。然而,对其分析往往缺乏能够捕捉步态障碍多方面性质的综合工具。传统方法可能无法充分解决CSVD对步态影响的复杂性,这凸显了通过先进技术手段详细探索步态特征的必要性。

目的

本研究旨在通过结合传感器和视频数据的综合分析,识别CSVD患者与健康老年人群相比独特的步态模式和姿势适应性,以全面了解CSVD中的步态动力学。

方法

本研究纳入了90名年龄超过50岁的参与者(平均年龄68.85岁,标准差9.74岁;47名男性和43名女性),其中24人被归类为正常对照组(平均年龄66.42岁,标准差7.51岁),66人被诊断为CSVD(平均年龄69.74岁,标准差10.37岁)。参与者进行了三项步行任务:正常步行、双任务步行(同时进行心算)和快速步行。通过视频数据使用OpenPose BODY_25关键点模型收集图像姿势参数的步态参数,并使用“口袋步态测试”智能手机应用程序以约40Hz的频率采样基于传感器的参数。数据分析包括5个基于传感器的参数(步频、均方根(RMS)、步幅变异性、步幅规律性和步幅对称性)和6个基于视频的关键参数(包括膝关节角度、踝关节角度、肘关节角度、身体躯干角度和头部姿势)。

结果

在29名拥有完整传感器和视频数据的参与者(10名正常对照组和19名CSVD患者)中,CSVD组和对照组之间在步幅规律性(正常步行:平均值0.76,标准差0.09 vs平均值0.61,标准差0.25;P<0.003;双任务:平均值0.74,标准差0.13 vs平均值0.57,标准差0.24;P<0.005)、RMS(正常步行:平均值1.64,标准差0.45 vs平均值1.43,标准差0.42;P<0.006)以及头部前倾姿势角度(正常步行时头部与身体角度:平均值132.96,标准差7.78 vs平均值128.07,标准差7.99;P<0.02;头部与地面角度:平均值134.11,标准差8.28 vs平均值128.40,标准差9.75;P<0.008)方面存在显著差异。CSVD组在所有步行任务中均表现出更明显的头部前倾姿势,在双任务步行时差异最为显著(头部与地面角度:平均值134.43,标准差8.29 vs平均值125.02,标准差8.42;P<0.02)。

结论

该研究提供了令人信服的证据,证明CSVD患者存在独特的步态障碍,其特征为步幅规律性降低(比对照组低15%-23%)、加速度模式改变以及显著的姿势适应性,尤其是头部前倾定位(比对照组更明显4°-7°)。这些可通过便捷的智能手机和视频技术检测到的可量化差异,为CSVD的早期检测和监测提供了潜在的生物标志物。传感器和视频分析的整合提供了一种更全面的评估方法,可在临床和家庭环境中实施,用于纵向监测疾病进展和康复结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4a1/12303540/c693d4c57fd4/formative-v9-e58864-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验