Suppr超能文献

光介导离子动力学实现了超低电压有机电化学器件中的多模态学习、记忆和传感。

Photomediated ion dynamics enables multi-modal learning, memory and sensing in ultralow-voltage organic electrochemical device.

作者信息

Liu Guocai, Wen Wei, Shan Cong, Huang Haojie, Zhao Yao, Bian Yangshuang, Guo Yunlong, Huang Hui, Liu Yunqi

机构信息

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences Beijing, Beijing, 100190, P. R. China.

University of Chinese Academy of Sciences, Beijing, 101408, P. R. China.

出版信息

Nat Commun. 2025 Jul 28;16(1):6933. doi: 10.1038/s41467-025-61783-1.

Abstract

Ion signaling enables biological systems to implement learning, memory and sensing tasks in an energy-efficient manner. Organic electrochemical transistors are promising building blocks for mimicking ion-driven processes in the organism due to the iontronic coupling. However, the ion kinetics of diffusion back to the electrolyte poses a challenge in achieving non-volatility at ultralow gate voltages (V) required to mimic human learning and memory capabilities. Here we report a non-volatile heterojunction organic electrochemical device (nHOED) driven by photomediated ion trap and release dynamics. Due to the efficient separation of photogenerated charges within the heterojunction, the holes can be tightly trapped by anions at the photoactive layer-channel interface. This enables the device to realize multibit memory (over 100 distinct memory states) over a broad wavelength spectrum of 365-660 nm. Consequently, the nHOED can effectively replicate the learning, memory and sensing capabilities of the human neural system. In addition, the protocol avoids the injection of trap-function anions into the channel, facilitating the device to achieve non-volatility in the absence of V. Moreover, by employing a vertical traverse architecture that offers the advantage of a short channel, the operating voltage of the nHOED has been reduced to 0.1 V.

摘要

离子信号传导使生物系统能够以节能的方式执行学习、记忆和传感任务。由于离子电子耦合,有机电化学晶体管是模拟生物体中离子驱动过程的有前途的构建模块。然而,离子扩散回电解质的动力学在模拟人类学习和记忆能力所需的超低栅极电压(V)下实现非易失性方面构成了挑战。在此,我们报道了一种由光介导的离子捕获和释放动力学驱动的非易失性异质结有机电化学器件(nHOED)。由于异质结内光生电荷的有效分离,空穴可以在光活性层-沟道界面处被阴离子紧密捕获。这使得该器件能够在365-660 nm的宽波长光谱上实现多位存储(超过100种不同的存储状态)。因此,nHOED可以有效地复制人类神经系统的学习、记忆和传感能力。此外,该方案避免了向沟道中注入陷阱功能阴离子,有助于器件在没有V的情况下实现非易失性。此外,通过采用具有短沟道优势的垂直横向架构,nHOED的工作电压已降至0.1 V。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f227/12304320/980b042fb5a2/41467_2025_61783_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验