Vegari Vahid, Taghizadeh Akbar, Hosseinkhani Ali, Besharati Maghsoud, Abass Kasim Sakran, Lackner Maximilian
Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
Department of Animal Science, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz, Iran.
Sci Rep. 2025 Jul 28;15(1):27482. doi: 10.1038/s41598-025-05608-7.
This study considered the effects of soybean processing methods (raw, roasted, microwaved) and selenium (Se) supplementation (nano-Se, sodium selenite) on in vitro rumen fermentation kinetics and microbial fuel cell (MFC) performance. Soybeans were thermally processed, and gas production (GP) and MFC voltage were measured over 96-120 h. Chemical analysis revealed microwave processing increased crude protein (39.20% vs. 37.35% raw) and reduced fiber content, enhancing digestibility. Gas production kinetics showed microwaved soybeans yielded the highest cumulative GP (312.75 mL/g DM at 96 h), surpassing roasted and raw treatments, likely due to structural modifications improving microbial accessibility. Nano-Se supplementation further amplified GP (320.04 mL/g DM at 96 h) and MFC voltage (3502.60 mV at 120 h), outperforming inorganic Se, attributed to enhanced microbial activity and antioxidant capacity. MFC voltage correlated strongly with GP (r = 0.95-0.99), validating MFCs as a dual-metric tool for assessing fermentation efficiency. Microwave processing generated the highest voltage (3241.30 mV), reflecting efficient electron transfer from disrupted fibrous structures. Nano-Se accelerated microbial kinetics, demonstrating superior bioavailability. Results highlight that thermal processing, particularly microwaving, optimizes nutrient utilization, while nano-Se enhances rumen microbial functions. The integration of GP and MFC metrics provides novel insights into feed degradability and microbial energetics, offering strategies to improve ruminant productivity and reduce environmental impacts. This study underscores the potential of combining advanced processing techniques and selenium supplementation to refine feed formulations and advance sustainable livestock practices.
本研究考察了大豆加工方法(生豆、烤豆、微波处理豆)和添加硒(纳米硒、亚硒酸钠)对体外瘤胃发酵动力学及微生物燃料电池(MFC)性能的影响。对大豆进行热处理,并在96 - 120小时内测量产气量(GP)和MFC电压。化学分析表明,微波处理提高了粗蛋白含量(从生豆的37.35%提高到39.20%)并降低了纤维含量,从而提高了消化率。产气动力学表明,微波处理的大豆产生的累积GP最高(96小时时为312.75 mL/g DM),超过了烤豆和生豆处理,这可能是由于结构改变提高了微生物的可及性。添加纳米硒进一步提高了GP(96小时时为320.04 mL/g DM)和MFC电压(120小时时为3502.60 mV),优于无机硒,这归因于微生物活性和抗氧化能力的增强。MFC电压与GP密切相关(r = 0.95 - 0.99),验证了MFC作为评估发酵效率的双指标工具。微波处理产生的电压最高(3241.30 mV),反映了从破坏的纤维结构中高效的电子转移。纳米硒加速了微生物动力学,显示出卓越的生物利用度。结果表明,热处理,特别是微波处理,优化了养分利用,而纳米硒增强了瘤胃微生物功能。GP和MFC指标的整合为饲料降解性和微生物能量学提供了新的见解,为提高反刍动物生产力和减少环境影响提供了策略。本研究强调了结合先进加工技术和添加硒来优化饲料配方及推进可持续畜牧业实践的潜力。