Lin Huihui, Jiang Jian, Dou Yanxin, Lyu Pin, Han Xiaocang, Meng Yuan, He Yuanyuan, Zhou Xin, Li Kangshu, Lin Guoming, Teng Yu, Chen Jinxing, Meng Yang, Osipowicz Thomas, Zhao Xiaoxu, Zeng Xiao Cheng, Lu Jiong
Department of Chemistry, National University of Singapore, Singapore, Singapore.
Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science Technology and Research (A*STAR), Singapore, Singapore.
Nat Nanotechnol. 2025 Jul 28. doi: 10.1038/s41565-025-01968-3.
Ångström-scale polygonal rings in monolayer amorphous carbon (MAC) enhance its electronic and mechanical properties while providing unique ångström pores for precise subatomic species separation, essential for advancements in catalysis, energy and medicine. However, the absence of an industrial-scale synthesis method for intrinsic MAC has limited its technological applications compared with graphene and bulk amorphous materials. Herein, we report an industry-compatible disorder-to-disorder synthesis approach to achieve wafer-scale ultraclean MAC (UC-MAC) within a timescale of seconds, featuring optimized ångström polygons without detectable metal contamination, and nanosized pores. In contrast to metal-contaminated MAC, UC-MAC allows atomic-scale characterization of intrinsic electronic properties and functions as an ångström-scale membrane, facilitating the splitting of high-flux H ions into a high-precision proton beam with minimal detrimental fragment-proton scattering events, about half and 40 times less than those from single-crystal graphene and commercial carbon thin films, respectively. The minimum possible membrane material thickness that can yield a highly sharpened proton beam with accurately modulated beam current is desired for proton therapy.
单层非晶碳(MAC)中埃尺度的多边形环增强了其电子和机械性能,同时提供了独特的埃级孔隙用于精确的亚原子物种分离,这对于催化、能源和医学的进步至关重要。然而,与石墨烯和块状非晶材料相比,缺乏用于本征MAC的工业规模合成方法限制了其技术应用。在此,我们报告了一种与工业兼容的无序到无序合成方法,可在数秒内实现晶圆级超净MAC(UC-MAC),其具有优化的埃多边形,无 detectable 金属污染和纳米级孔隙。与金属污染的MAC相比,UC-MAC允许对本征电子特性进行原子尺度表征,并作为埃尺度的膜发挥作用,有助于将高通量H离子分裂成高精度质子束,有害的碎片-质子散射事件极少,分别比单晶石墨烯和商业碳薄膜少约一半和40倍。质子治疗需要能够产生具有精确调制束流的高度锐化质子束的最小可能膜材料厚度。