Ebersbach Paul, Smirnoff Nicholas, Camp Charles H, Moger Julian
School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, U.K.
Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QL, U.K.
Anal Chem. 2025 Aug 12;97(31):16868-16876. doi: 10.1021/acs.analchem.5c01980. Epub 2025 Jul 28.
Plants are inherently complex systems dynamically interacting at different size scale levels. Spontaneous Raman microscopy links the molecular with the cellular structural level; however, as Raman scattering is a low-probability phenomenon, pixel dwell times for biological applications are not compatible with high-resolution imaging. Due to absorption and autofluorescence interferences, Raman methods are often restricted to pigment-poor regions in plant samples. Here, we apply broadband coherent anti-Stokes Raman scattering (BCARS) microscopy─a nonlinear optical counterpart of spontaneous Raman microscopy─for the first time on plant samples. We show that it generates Raman-like vibrational signals but with much faster acquisition times (10 ms/spectrum), facilitating large-area imaging in high resolution. Using a new optimized unmixing procedure in conjunction with existing, robust preprocessing methods, we can extract the chemical and spatially rich information from leaf cross sections from the upper cuticle to the chlorophyll fluorescence-dominated palisade and spongy mesophyll region. The method selectively extracts chemical components from the cuticle (waxes), cell walls (pectin, cellulose), and mesophyll (chlorophyll, carotenoids, lipoproteins, starch) and depicts the accumulation of calcium oxalate crystals, flavonols, and anthocyanins in vacuoles. Photosystem-specific spectral changes of chlorophyll and carotenoid signals in intact and degraded leaves reveal a chloroplast adaptation to the light absorption gradient in a leaf. The signal-intense bands give rise to further enhancement mechanisms through electronic (pre)resonance (chlorophyll, anthocyanin), strongly coherently amplified supramolecular ensembles with copigments (anthocyanin), and π-electron-phonon coupling (carotenoids). OH-stretching signals reveal that calcium oxalate crystals have a mixed hydration state. The results outline that the system view imaging capabilities of BCARS microscopy make it a valuable tool in plant and agrochemical research.
植物是本质上复杂的系统,在不同大小尺度水平上动态相互作用。自发拉曼显微镜将分子水平与细胞结构水平联系起来;然而,由于拉曼散射是一种低概率现象,生物应用中的像素驻留时间与高分辨率成像不兼容。由于吸收和自发荧光干扰,拉曼方法通常限于植物样品中色素含量低的区域。在此,我们首次将宽带相干反斯托克斯拉曼散射(BCARS)显微镜——自发拉曼显微镜的非线性光学对应物——应用于植物样品。我们表明,它能产生类似拉曼的振动信号,但采集时间快得多(10毫秒/光谱),便于进行高分辨率的大面积成像。结合现有的、强大的预处理方法,使用一种新的优化解混程序,我们可以从叶横切面中提取从上部角质层到叶绿素荧光主导的栅栏组织和海绵状叶肉区域的丰富化学和空间信息。该方法能从角质层(蜡质)、细胞壁(果胶、纤维素)和叶肉(叶绿素、类胡萝卜素、脂蛋白、淀粉)中选择性地提取化学成分,并描绘出液泡中草酸钙晶体、黄酮醇和花青素的积累情况。完整和降解叶片中叶绿素和类胡萝卜素信号的光系统特异性光谱变化揭示了叶绿体对叶片中光吸收梯度的适应性。信号强度带通过电子(预)共振(叶绿素、花青素)、与共色素强烈相干放大的超分子集合体(花青素)以及π电子-声子耦合(类胡萝卜素)产生进一步的增强机制。OH伸缩信号表明草酸钙晶体具有混合水合状态。结果表明,BCARS显微镜的系统视图成像能力使其成为植物和农用化学品研究中的一种有价值的工具。