Sastré-Velásquez Luis Enrique, Mach Natalia, Mertens Birte, Kühbacher Alexander, Merschak Petra, Dallemulle Alex, Lechner Lukas, Baldin Clara, Diallinas George, Gsaller Fabio
Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
Research and Innovation Unit, Health University of Applied Sciences Tyrol/FH Gesundheit Tirol, Innsbruck, Austria.
J Biol Eng. 2025 Jul 28;19(1):69. doi: 10.1186/s13036-025-00539-3.
The discovery of CRISPR/Cas9 and its subsequent accessibility in daily research initiated a new era in genome editing. This game-changing genetic instrument enabled a vast array of challenging applications requiring site-specific genome engineering as well as applications involving the equipment of cells with additional genetic traits. Despite the undisputed benefits of this technology, for facile and efficient selection of successfully manipulated cells selectable markers remain indispensable. Over the past years endogenous counter-selectable markers have come into focus in antifungal research enabling site-directed integration of multiple genes into the genome of the human mold pathogen Aspergillus fumigatus. However, gene cassettes had to be transformed in a consecutive manner keeping multigene integrations laborious and time-consuming.
In this work, we coupled the use of CRISPR/Cas9 with endogenous counter-selectable markers to achieve the simultaneous integration of multiple expression cassettes. The three markers used in this work included the herein employed azgA and the previously identified fcyB and cntA, responsible for 8-azaguanine, 5-fluorocytosine and 5-fluorouridine uptake, respectively. Exploiting their role in uptake of different selective agents, a triple selective transformation procedure and genomic integration of three expression cassettes in A. fumigatus was successfully accomplished. In addition to three distinct cellular reporters, we introduced strain-specific fluorescent reporters into four isolates displaying different levels of antifungal azole resistance to subsequently visualize and monitor their growth patterns in the same growth environment.
The technology described in this study significantly streamlines the genetic manipulation process, reducing both time and labor associated with sequential transformations. By enabling the introduction of multiple genetic traits in a single transformation event, this strategy provides a flexible and efficient platform for a wide range of applications. As such, it enhances the potential for rapid and effective multigene integration, advancing the field of genetic engineering in fungi.
CRISPR/Cas9的发现及其在日常研究中的后续可用性开启了基因组编辑的新时代。这种改变游戏规则的基因工具实现了大量具有挑战性的应用,这些应用需要位点特异性基因组工程,以及涉及赋予细胞额外遗传特性的应用。尽管这项技术有毋庸置疑的好处,但为了方便、高效地筛选成功操作的细胞,选择标记仍然不可或缺。在过去几年中,内源性反选择标记在抗真菌研究中受到关注,它能够将多个基因定点整合到人类霉菌病原体烟曲霉的基因组中。然而,基因盒必须以连续的方式进行转化,这使得多基因整合既费力又耗时。
在这项工作中,我们将CRISPR/Cas9的使用与内源性反选择标记相结合,以实现多个表达盒的同时整合。本研究中使用的三个标记包括此处使用的azgA以及先前鉴定的fcyB和cntA,它们分别负责8-氮杂鸟嘌呤、5-氟胞嘧啶和5-氟尿苷的摄取。利用它们在摄取不同选择剂中的作用,成功完成了烟曲霉中三个表达盒的三重选择性转化程序和基因组整合。除了三种不同的细胞报告基因外,我们还将菌株特异性荧光报告基因引入了四个显示不同水平抗真菌唑抗性的分离株中,以便随后在相同的生长环境中可视化并监测它们的生长模式。
本研究中描述的技术显著简化了基因操作过程,减少了与连续转化相关的时间和工作量。通过在单个转化事件中引入多个遗传特性,该策略为广泛的应用提供了一个灵活高效的平台。因此,它增强了快速有效进行多基因整合的潜力,推动了真菌基因工程领域的发展。