Suppr超能文献

Ki-67作为肾上腺皮质癌转移的预测指标:基于回顾性影像数据的人工智能见解

Ki-67 as a Predictor of Metastasis in Adrenocortical Carcinoma: Artificial Intelligence Insights from Retrospective Imaging Data.

作者信息

Goulian Andrew J, Yee David S

机构信息

College of Medicine, California Northstate University, Elk Grove, CA 95757, USA.

Department of Urology and Genitourinary Oncology, Sutter Health, Roseville, CA 95661, USA.

出版信息

J Clin Med. 2025 Jul 8;14(14):4829. doi: 10.3390/jcm14144829.

Abstract

Adrenocortical carcinoma (ACC) is a rare, aggressive malignancy with poor prognosis, particularly in metastatic cases. The Ki-67 proliferation index is a recognized marker of tumor aggressiveness, yet its role in guiding diagnostic imaging and surgical decision-making remains underexplored. This study evaluates Ki-67's predictive value for metastasis at diagnosis, leveraging artificial intelligence (AI) to inform personalized, minimally invasive strategies for ACC management. We retrospectively analyzed 53 patients with histologically confirmed ACC from the Adrenal-ACC-Ki67-Seg dataset in The Cancer Imaging Archive. All patients had Ki-67 indices from surgical specimens and preoperative contrast-enhanced CT scans. Descriptive statistics, -tests, ANOVA, and multivariable logistic regression evaluated associations between Ki-67, tumor size, age, and metastasis. Random Forest classifiers-with and without the Synthetic Minority Oversampling Technique (SMOTE)-were developed to predict metastasis. A Ki-67-only model served as a baseline comparator. Model performance was assessed using the area under the curve (AUC) and DeLong's test. Patients with metastatic disease had significantly higher Ki-67 indices (mean 39.4% vs. 21.6%, < 0.05). Logistic regression identified Ki-67 as the sole significant predictor (OR = 1.06, 95% CI: 1.01-1.12). The Ki-67-only model achieved an AUC of 0.637, while the SMOTE-enhanced Random Forest achieved an AUC of 0.994, significantly outperforming all others ( < 0.001). Ki-67 is significantly associated with metastasis at ACC diagnosis and demonstrates independent predictive value in regression analysis. However, integration with machine learning models incorporating tumor size and age significantly improves overall predictive accuracy, supporting AI-assisted risk stratification and precision imaging strategies in adrenal cancer care.

摘要

肾上腺皮质癌(ACC)是一种罕见的侵袭性恶性肿瘤,预后较差,尤其是在转移性病例中。Ki-67增殖指数是公认的肿瘤侵袭性标志物,但其在指导诊断性影像学检查和手术决策中的作用仍未得到充分探索。本研究利用人工智能(AI)评估Ki-67在诊断时对转移的预测价值,为ACC的管理提供个性化、微创策略。我们回顾性分析了癌症影像存档库中肾上腺-ACC-Ki67-Seg数据集中53例经组织学确诊的ACC患者。所有患者均有手术标本的Ki-67指数和术前增强CT扫描结果。描述性统计、t检验、方差分析和多变量逻辑回归评估了Ki-67、肿瘤大小、年龄和转移之间的关联。开发了有和没有合成少数过采样技术(SMOTE)的随机森林分类器来预测转移。仅使用Ki-67的模型作为基线对照。使用曲线下面积(AUC)和德龙检验评估模型性能。转移性疾病患者的Ki-67指数显著更高(平均39.4%对21.6%,P<0.05)。逻辑回归确定Ki-67是唯一显著的预测因子(OR = 1.06,95%CI:1.01-1.12)。仅使用Ki-67的模型AUC为0.637,而SMOTE增强的随机森林AUC为0.994,显著优于所有其他模型(P<0.001)。Ki-67在ACC诊断时与转移显著相关,并在回归分析中显示出独立的预测价值。然而,与纳入肿瘤大小和年龄的机器学习模型相结合可显著提高总体预测准确性,支持肾上腺癌护理中的AI辅助风险分层和精准成像策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11eb/12295066/dca4a60bf08e/jcm-14-04829-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验