Wohl Samuel, Gilron Yishai, Zheng Wenwei
Department of Physics, Arizona State University, Tempe, Arizona 85287, United States.
College of Integrative Sciences and Arts, Arizona State University, Mesa, Arizona 85212, United States.
ACS Phys Chem Au. 2025 Apr 15;5(4):356-366. doi: 10.1021/acsphyschemau.5c00005. eCollection 2025 Jul 23.
Intrinsically disordered proteins (IDPs) perform diverse biological functions without adopting stable folded structures, instead existing as dynamic ensembles of flexible conformations. While these conformations were traditionally attributed to weak, nonspecific interactions, emerging evidence emphasizes the role of transient, specific interactions. Here, we investigate how charged amino acids within IDP sequences influence the prevalence of these interactions. Using model peptides, we establish an empirical relationship between the fraction of transient interactions and a novel sequence metric, the effective charge patch length. Extending this analysis to IDP ensembles with varying levels of transient interactions, we uncover heteropolymeric structural behaviors, including network formation in phase-separated condensates. A large-scale analysis reveals that approximately 20% of disordered regions in the human proteome exhibit charge-driven transient interactions, contributing to heteropolymeric conformational ensembles. Finally, we explore the functional enrichment of these interactions, underscoring their potential role in mediating diverse biological processes.
内在无序蛋白(IDP)不采用稳定的折叠结构就能执行多种生物学功能,而是以灵活构象的动态集合形式存在。虽然这些构象传统上被归因于弱的、非特异性相互作用,但新出现的证据强调了瞬时特异性相互作用的作用。在这里,我们研究IDP序列中的带电荷氨基酸如何影响这些相互作用的发生率。使用模型肽,我们建立了瞬时相互作用分数与一个新的序列指标——有效电荷补丁长度之间的经验关系。将此分析扩展到具有不同水平瞬时相互作用的IDP集合,我们发现了异聚体结构行为,包括相分离凝聚物中的网络形成。大规模分析表明,人类蛋白质组中约20%的无序区域表现出电荷驱动的瞬时相互作用,有助于形成异聚体构象集合。最后,我们探索了这些相互作用的功能富集,强调了它们在介导多种生物学过程中的潜在作用。