Suppr超能文献

序列特异性相互作用决定了蛋白质凝聚物的粘弹性和老化动力学。

Sequence-specific interactions determine viscoelasticity and aging dynamics of protein condensates.

作者信息

Alshareedah Ibraheem, Borcherds Wade M, Cohen Samuel R, Singh Anurag, Posey Ammon E, Farag Mina, Bremer Anne, Strout Gregory W, Tomares Dylan T, Pappu Rohit V, Mittag Tanja, Banerjee Priya R

机构信息

Department of Physics, The State University of New York at Buffalo, Buffalo, NY 14260, USA.

Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.

出版信息

Nat Phys. 2024 Sep;20(9):1482-1491. doi: 10.1038/s41567-024-02558-1. Epub 2024 Jul 2.

Abstract

Biomolecular condensates are viscoelastic materials. Here, we investigate the determinants of sequence-encoded and age-dependent viscoelasticity of condensates formed by the prion-like low-complexity domain of the protein hnRNP A1 and its designed variants. We find that the dominantly viscous forms of the condensates are metastable Maxwell fluids. A Rouse-Zimm model that accounts for the network-like organization of proteins within condensates reproduces the measured viscoelastic moduli. We show that the strengths of aromatic inter-sticker interactions determine sequence-specific amplitudes of elastic and viscous moduli, and the timescales over which elastic properties dominate. These condensates undergo physical ageing on sequence-specific timescales. This is driven by mutations to spacer residues that weaken the metastability of dominantly viscous phases. The ageing of condensates is accompanied by disorder-to-order transitions, leading to the formation of non-fibrillar, beta-sheet-containing, semi-crystalline, elastic, Kelvin-Voigt solids. Our results suggest that sequence grammars, which refer to amino acid identities of stickers versus spacers in prion-like low-complexity domains, have evolved to afford control over metastabilities of dominantly viscous fluid phases of condensates. This selection is likely to render barriers for conversion from metastable fluids to globally stable solids insurmountable on functionally relevant timescales.

摘要

生物分子凝聚物是粘弹性材料。在此,我们研究了由蛋白质hnRNP A1的朊病毒样低复杂性结构域及其设计变体形成的凝聚物的序列编码和年龄依赖性粘弹性的决定因素。我们发现,凝聚物的主要粘性形式是亚稳态麦克斯韦流体。一个考虑了凝聚物中蛋白质网络状组织的Rouse-Zimm模型再现了测量的粘弹性模量。我们表明,芳香族相互作用贴纸的强度决定了弹性和粘性模量的序列特异性幅度,以及弹性特性占主导的时间尺度。这些凝聚物在序列特异性时间尺度上经历物理老化。这是由间隔残基的突变驱动的,这些突变削弱了主要粘性相的亚稳定性。凝聚物的老化伴随着无序到有序的转变,导致形成非纤维状、含β-折叠的半结晶弹性开尔文-沃伊特固体。我们的结果表明,序列语法(指朊病毒样低复杂性结构域中贴纸与间隔物的氨基酸同一性)已经进化,以控制凝聚物主要粘性流体相的亚稳定性。这种选择可能会在功能相关的时间尺度上使从亚稳态流体转变为全局稳定固体的障碍变得不可逾越。

相似文献

引用本文的文献

3
Microrheology: From Video Microscopy to Optical Tweezers.微观流变学:从视频显微镜到光镊
Micromachines (Basel). 2025 Aug 8;16(8):918. doi: 10.3390/mi16080918.
7
The rheology and interfacial properties of biomolecular condensates.生物分子凝聚物的流变学和界面性质
Biophys Rev. 2025 Jun 30;17(3):867-891. doi: 10.1007/s12551-025-01326-6. eCollection 2025 Jun.

本文引用的文献

5
The liquid-to-solid transition of FUS is promoted by the condensate surface.液-固相变是由凝聚态表面促进的。
Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2301366120. doi: 10.1073/pnas.2301366120. Epub 2023 Aug 7.
6
Phase Transitions of Associative Biomacromolecules.缔合生物大分子的相转变。
Chem Rev. 2023 Jul 26;123(14):8945-8987. doi: 10.1021/acs.chemrev.2c00814. Epub 2023 Mar 7.
9
Rheology and Viscoelasticity of Proteins and Nucleic Acids Condensates.蛋白质和核酸凝聚物的流变学与粘弹性
JACS Au. 2022 Jun 13;2(7):1506-1521. doi: 10.1021/jacsau.2c00055. eCollection 2022 Jul 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验