Alshareedah Ibraheem, Borcherds Wade M, Cohen Samuel R, Singh Anurag, Posey Ammon E, Farag Mina, Bremer Anne, Strout Gregory W, Tomares Dylan T, Pappu Rohit V, Mittag Tanja, Banerjee Priya R
Department of Physics, The State University of New York at Buffalo, Buffalo, NY 14260, USA.
Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
Nat Phys. 2024 Sep;20(9):1482-1491. doi: 10.1038/s41567-024-02558-1. Epub 2024 Jul 2.
Biomolecular condensates are viscoelastic materials. Here, we investigate the determinants of sequence-encoded and age-dependent viscoelasticity of condensates formed by the prion-like low-complexity domain of the protein hnRNP A1 and its designed variants. We find that the dominantly viscous forms of the condensates are metastable Maxwell fluids. A Rouse-Zimm model that accounts for the network-like organization of proteins within condensates reproduces the measured viscoelastic moduli. We show that the strengths of aromatic inter-sticker interactions determine sequence-specific amplitudes of elastic and viscous moduli, and the timescales over which elastic properties dominate. These condensates undergo physical ageing on sequence-specific timescales. This is driven by mutations to spacer residues that weaken the metastability of dominantly viscous phases. The ageing of condensates is accompanied by disorder-to-order transitions, leading to the formation of non-fibrillar, beta-sheet-containing, semi-crystalline, elastic, Kelvin-Voigt solids. Our results suggest that sequence grammars, which refer to amino acid identities of stickers versus spacers in prion-like low-complexity domains, have evolved to afford control over metastabilities of dominantly viscous fluid phases of condensates. This selection is likely to render barriers for conversion from metastable fluids to globally stable solids insurmountable on functionally relevant timescales.
生物分子凝聚物是粘弹性材料。在此,我们研究了由蛋白质hnRNP A1的朊病毒样低复杂性结构域及其设计变体形成的凝聚物的序列编码和年龄依赖性粘弹性的决定因素。我们发现,凝聚物的主要粘性形式是亚稳态麦克斯韦流体。一个考虑了凝聚物中蛋白质网络状组织的Rouse-Zimm模型再现了测量的粘弹性模量。我们表明,芳香族相互作用贴纸的强度决定了弹性和粘性模量的序列特异性幅度,以及弹性特性占主导的时间尺度。这些凝聚物在序列特异性时间尺度上经历物理老化。这是由间隔残基的突变驱动的,这些突变削弱了主要粘性相的亚稳定性。凝聚物的老化伴随着无序到有序的转变,导致形成非纤维状、含β-折叠的半结晶弹性开尔文-沃伊特固体。我们的结果表明,序列语法(指朊病毒样低复杂性结构域中贴纸与间隔物的氨基酸同一性)已经进化,以控制凝聚物主要粘性流体相的亚稳定性。这种选择可能会在功能相关的时间尺度上使从亚稳态流体转变为全局稳定固体的障碍变得不可逾越。