Suppr超能文献

通过线粒体损伤途径对具有神经学特征的疾病进行映射:来自遗传学证据的见解

Mapping Disorders with Neurological Features Through Mitochondrial Impairment Pathways: Insights from Genetic Evidence.

作者信息

Makridou Anna, Sintou Evangelie, Chatzianagnosti Sofia, Dermitzakis Iasonas, Gargani Sofia, Manthou Maria Eleni, Theotokis Paschalis

机构信息

Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.

2nd Department of Neurology University General Hospital AHEPA, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece.

出版信息

Curr Issues Mol Biol. 2025 Jul 1;47(7):504. doi: 10.3390/cimb47070504.

Abstract

Mitochondrial dysfunction is a key driver of neurological disorders due to the brain's high energy demands and reliance on mitochondrial homeostasis. Despite advances in genetic characterization, the heterogeneity of mitochondrial diseases complicates diagnosis and treatment. Mitochondrial dysfunction spans a broad clinical spectrum, from early-onset encephalopathies to adult neurodegeneration, with phenotypic and genetic variability necessitating integrated models of mitochondrial neuropathology. Mutations in nuclear or mitochondrial DNA disrupt energy production, induce oxidative stress, impair mitophagy and biogenesis, and lead to neuronal degeneration and apoptosis. This narrative review provides a structured synthesis of current knowledge by classifying mitochondrial-related neurological disorders according to disrupted biochemical pathways, in order to clarify links between genetic mutations, metabolic impairments, and clinical phenotypes. More specifically, a pathway-oriented framework was adopted that organizes disorders based on the primary mitochondrial processes affected: oxidative phosphorylation (OXPHOS), pyruvate metabolism, fatty acid β-oxidation, amino acid metabolism, phospholipid remodeling, multi-system interactions, and neurodegeneration with brain iron accumulation. Genetic, clinical and molecular data were analyzed to elucidate shared and distinct pathophysiological features. A comprehensive table synthesizes genetic causes, inheritance patterns, and neurological manifestations across disorders. This approach offers a conceptual framework that connects molecular findings to clinical practice, supporting more precise diagnostic strategies and the development of targeted therapies. Advances in whole-exome sequencing, pharmacogenomic profiling, mitochondrial gene editing, metabolic reprogramming, and replacement therapy-promise individualized therapeutic approaches, although hurdles including heteroplasmy, tissue specificity, and delivery challenges must be overcome. Ongoing molecular research is essential for translating these advances into improved patient care and quality of life.

摘要

由于大脑对能量的高需求以及对线粒体稳态的依赖,线粒体功能障碍是神经系统疾病的关键驱动因素。尽管在基因特征研究方面取得了进展,但线粒体疾病的异质性使诊断和治疗变得复杂。线粒体功能障碍涵盖了广泛的临床范围,从早发性脑病到成人神经退行性疾病,其表型和基因变异性需要线粒体神经病理学的综合模型。核DNA或线粒体DNA的突变会破坏能量产生,诱导氧化应激,损害线粒体自噬和生物合成,并导致神经元变性和凋亡。这篇叙述性综述通过根据生化途径中断对线粒体相关神经系统疾病进行分类,对当前知识进行了结构化总结,以阐明基因突变、代谢障碍和临床表型之间的联系。更具体地说,采用了一种以途径为导向的框架,根据受影响的主要线粒体过程来组织疾病:氧化磷酸化(OXPHOS)、丙酮酸代谢、脂肪酸β氧化、氨基酸代谢、磷脂重塑、多系统相互作用以及伴有脑铁沉积的神经退行性变。分析了遗传、临床和分子数据,以阐明共同和独特的病理生理特征。一个综合表格总结了各种疾病的遗传原因、遗传模式和神经学表现。这种方法提供了一个将分子研究结果与临床实践联系起来的概念框架,支持更精确的诊断策略和靶向治疗的开发。全外显子测序、药物基因组分析、线粒体基因编辑、代谢重编程和替代疗法的进展有望实现个性化治疗方法,尽管必须克服包括异质性、组织特异性和递送挑战在内的障碍。正在进行的分子研究对于将这些进展转化为改善患者护理和生活质量至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f58e/12293710/4242030b4187/cimb-47-00504-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验