Suppr超能文献

无线体域网中用于人类活动识别的智能路由

Intelligent routing for human activity recognition in wireless body area networks.

作者信息

Elmosallamy Enas Selem, Soliman Mohammed F

机构信息

Information Technology Department, Faculty of Computer and Information Suez University, Suez, 43221, Egypt.

Electrical and Computer Engineering Department, Iowa State University, Ames, 50011, United States.

出版信息

Sci Rep. 2025 Jul 29;15(1):27720. doi: 10.1038/s41598-025-12114-3.

Abstract

Human activity recognition (HAR), driven by machine learning techniques, offer the detection of diverse activities such as walking, running, and more. Considering the dynamic nature, limited energy and mobility of wireless body area networks (WBANs), HAR can play a significant role in enhancing WBANs performance. This paper genuinely bridges HAR's activity recognition capability using machine learning to develop a novel WBAN routing decisions adoptively. Being optimum in power consumption, we employed Random Forest classification algorithm for activity recognition. The resulted system holds great promise for optimizing routing decisions, improving energy efficiency, and enhancing the overall performance of WBANs in healthcare and related domains. To evaluate the performance of the proposed protocol, we have measured various performance metrics, including energy consumption, throughput, and the number of dead nodes. The results have been compared with mobTHE protocol to demonstrate the effectiveness of our HAR based Routing protocol.

摘要

由机器学习技术驱动的人类活动识别(HAR)能够检测多种活动,如行走、跑步等。考虑到无线体域网(WBAN)的动态特性、有限的能量和移动性,HAR在提升WBAN性能方面可发挥重要作用。本文切实地利用机器学习将HAR的活动识别能力与自适应地开发新颖的WBAN路由决策相联系。在功耗方面达到最优,我们采用随机森林分类算法进行活动识别。所得系统在优化路由决策、提高能源效率以及提升WBAN在医疗保健及相关领域的整体性能方面具有很大潜力。为评估所提协议的性能,我们测量了各种性能指标,包括能耗、吞吐量和死节点数量。已将结果与mobTHE协议进行比较,以证明我们基于HAR的路由协议的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验