Suppr超能文献

纳米耐磨涂层的多尺度模拟

Multiscale Simulation of Nanowear-Resistant Coatings.

作者信息

Liu Xiaoming, Gao Kun, Chen Peng, Yin Lijun, Yang Jing

机构信息

Inner Mongolia Power (Group) Co., Ltd., Inner Mongolia Power Research Institute Branch, Hohhot 010020, China.

School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.

出版信息

Materials (Basel). 2025 Jul 16;18(14):3334. doi: 10.3390/ma18143334.

Abstract

Nanowear-resistant coatings are critical for extending the service life of mechanical components, yet their performance optimization remains challenging due to the complex interplay between atomic-scale defects and macroscopic wear behavior. While experimental characterization struggles to resolve transient interfacial phenomena, multiscale simulations, integrating ab initio calculations, molecular dynamics, and continuum mechanics, have emerged as a powerful tool to decode structure-property relationships. This review systematically compares mainstream computational methods and analyzes their coupling strategies. Through case studies on metal alloy nanocoatings, we demonstrate how machine learning-accelerated simulations enable the targeted design of layered architectures with 30% improved wear resistance. Finally, we propose a protocol combining high-throughput simulation and topology optimization to guide future coating development.

摘要

耐纳米磨损涂层对于延长机械部件的使用寿命至关重要,然而,由于原子尺度缺陷与宏观磨损行为之间复杂的相互作用,其性能优化仍然具有挑战性。虽然实验表征难以解析瞬态界面现象,但将从头算计算、分子动力学和连续介质力学相结合的多尺度模拟已成为解码结构-性能关系的有力工具。本文综述系统地比较了主流计算方法并分析了它们的耦合策略。通过对金属合金纳米涂层的案例研究,我们展示了机器学习加速模拟如何实现具有30% 耐磨性提升的分层结构的定向设计。最后,我们提出了一种结合高通量模拟和拓扑优化的方案,以指导未来涂层的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d330/12298261/88ae55aa566c/materials-18-03334-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验