Suppr超能文献

用于混凝土裂缝分割的轻量级双注意力网络

Lightweight Dual-Attention Network for Concrete Crack Segmentation.

作者信息

Feng Min, Xu Juncai

机构信息

Anhui Provincial International Joint Research Center of Data Diagnosis and Smart Maintenance on Bridge Structures, Chuzhou 239099, China.

Nanjing Rehabilitation Medical Center, Nanjing Medical University, Nanjing 210029, China.

出版信息

Sensors (Basel). 2025 Jul 16;25(14):4436. doi: 10.3390/s25144436.

Abstract

Structural health monitoring in resource-constrained environments demands crack segmentation models that match the accuracy of heavyweight convolutional networks while conforming to the power, memory, and latency limits of watt-level edge devices. This study presents a lightweight dual-attention network, which is a four-stage U-Net compressed to one-quarter of the channel depth and augmented-exclusively at the deepest layer-with a compact dual-attention block that couples channel excitation with spatial self-attention. The added mechanism increases computation by only 19%, limits the weight budget to 7.4 MB, and remains fully compatible with post-training INT8 quantization. On a pixel-labelled concrete crack benchmark, the proposed network achieves an intersection over union of 0.827 and an F1 score of 0.905, thus outperforming CrackTree, Hybrid 2020, MobileNetV3, and ESPNetv2. While refined weight initialization and Dice-augmented loss provide slight improvements, ablation experiments show that the dual-attention module is the main factor influencing accuracy. With 110 frames per second on a 10 W Jetson Nano and 220 frames per second on a 5 W Coral TPU achieved without observable accuracy loss, hardware-in-the-loop tests validate real-time viability. Thus, the proposed network offers cutting-edge crack segmentation at the kiloflop scale, thus facilitating ongoing, on-device civil infrastructure inspection.

摘要

在资源受限的环境中进行结构健康监测,需要裂缝分割模型既要匹配重量级卷积网络的精度,又要符合瓦级边缘设备的功率、内存和延迟限制。本研究提出了一种轻量级双注意力网络,它是一个四阶段的U-Net,通道深度压缩至四分之一,并仅在最深层通过一个紧凑的双注意力块进行增强,该双注意力块将通道激励与空间自注意力相结合。新增的机制仅使计算量增加了19%,将权重预算限制在7.4MB,并与训练后INT8量化完全兼容。在一个带像素标记的混凝土裂缝基准测试中,所提出的网络实现了0.827的交并比和0.905的F1分数,从而优于CrackTree、Hybrid 2020、MobileNetV3和ESPNetv2。虽然精细的权重初始化和骰子增强损失提供了轻微的改进,但消融实验表明双注意力模块是影响精度的主要因素。在10W的Jetson Nano上达到每秒110帧,在5W的Coral TPU上达到每秒220帧,且没有明显的精度损失,硬件在环测试验证了实时可行性。因此,所提出的网络在千次浮点运算规模上提供了前沿的裂缝分割,从而便于正在进行的设备级民用基础设施检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33e2/12298203/861999c09dcc/sensors-25-04436-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验