Segura-Cedres Moises, Manzano-Farray Desiree, Aguiar-Castillo Carmen Lidia, Perez-Jimenez Rafael, Guerra-Yanez Victor
Instituto para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC), Universidad de Las Palmas de Gran Canaria (ULPGC), Juan de Quedasa 30, 35001 Las Palmas de Gran Canaria, Spain.
Pi Lighting, 1950 Sion, Switzerland.
Sensors (Basel). 2025 Jul 20;25(14):4504. doi: 10.3390/s25144504.
The implementation of Digital Twins (DTs) in hospitality facilities represents a significant opportunity to optimize front-end services, enhancing guest experience and operational efficiency. This paper proposes an ontology-driven approach for DTs in hotel reception areas, focusing on integrating IoT devices, real-time data processing, and service optimization. By modeling interactions between guests, receptionists, and hotel management systems, DTs enhance resource allocation, predictive maintenance, and customer satisfaction. Simulations and historical data analysis enable forecasting demand fluctuations and optimizing check-in/check-out processes. This research provides a structured framework for DT applications in hospitality, validated through scenario-based simulations, showing significant improvements in check-in time and guest satisfaction. Validation was conducted through scenario-based simulations reflecting real-world operational challenges, such as guest surges, room assignment, and staff workload balancing. Metrics including check-in time, guest satisfaction index, task completion rates, and prediction accuracy were used to evaluate performance. Simulations were grounded in historical hotel data and modeled typical peak-period dynamics to ensure realism. Results demonstrated a 25-35% reduction in check-in time, a 20% improvement in staff efficiency, and significant enhancements in guest satisfaction, underscoring the practical value of the proposed framework in real hospitality settings.
在酒店设施中实施数字孪生(DTs)是优化前端服务、提升客人体验和运营效率的重大机遇。本文提出了一种用于酒店接待区域数字孪生的本体驱动方法,重点在于整合物联网设备、实时数据处理和服务优化。通过对客人、接待员和酒店管理系统之间的交互进行建模,数字孪生可提升资源分配、预测性维护和客户满意度。模拟和历史数据分析能够预测需求波动并优化入住/退房流程。本研究为酒店业数字孪生应用提供了一个结构化框架,并通过基于场景的模拟进行了验证,结果显示在入住时间和客人满意度方面有显著改善。验证是通过反映实际运营挑战(如客人激增、房间分配和员工工作量平衡)的基于场景的模拟进行的。使用包括入住时间、客人满意度指数、任务完成率和预测准确性在内的指标来评估性能。模拟基于酒店历史数据,并对典型高峰期动态进行建模以确保真实性。结果表明,入住时间减少了25 - 35%,员工效率提高了20%,客人满意度显著提升,突出了所提出框架在实际酒店环境中的实用价值。