机器学习在3D生物打印中的应用:聚焦大数据与数字孪生的发展

Application of Machine Learning in 3D Bioprinting: Focus on Development of Big Data and Digital Twin.

作者信息

An Jia, Chua Chee Kai, Mironov Vladimir

机构信息

Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.

Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372.

出版信息

Int J Bioprint. 2021 Jan 29;7(1):342. doi: 10.18063/ijb.v7i1.342. eCollection 2021.

Abstract

The application of machine learning (ML) in bioprinting has attracted considerable attention recently. Many have focused on the benefits and potential of ML, but a clear overview of how ML shapes the future of three-dimensional (3D) bioprinting is still lacking. Here, it is proposed that two missing links, Big Data and Digital Twin, are the key to articulate the vision of future 3D bioprinting. Creating training databases from Big Data curation and building digital twins of human organs with cellular resolution and properties are the most important and urgent challenges. With these missing links, it is envisioned that future 3D bioprinting will become more digital and , and eventually strike a balance between virtual and physical experiments toward the most efficient utilization of bioprinting resources. Furthermore, the virtual component of bioprinting and biofabrication, namely, digital bioprinting, will become a new growth point for digital industry and information technology in future.

摘要

机器学习(ML)在生物打印中的应用近来备受关注。许多人聚焦于ML的益处和潜力,但对于ML如何塑造三维(3D)生物打印的未来仍缺乏清晰的概述。在此提出,大数据和数字孪生这两个缺失环节是阐明未来3D生物打印愿景的关键。通过大数据管理创建训练数据库以及构建具有细胞分辨率和特性的人体器官数字孪生模型是最重要且紧迫的挑战。有了这些缺失环节,预计未来的3D生物打印将变得更加数字化,最终在虚拟和物理实验之间取得平衡,以最有效地利用生物打印资源。此外,生物打印和生物制造的虚拟部分,即数字生物打印,将成为未来数字产业和信息技术的一个新增长点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a61/7875058/5987ff890b99/IJB-7-1-342-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索