Peters Frank B, Rapp Andreas O
Institut für Berufswissenschaften im Bauwesen, Leibniz-Universität Hannover, Herrenhäuser Straße 8, 30419 Hannover, Germany.
Polymers (Basel). 2025 Jul 10;17(14):1908. doi: 10.3390/polym17141908.
A key discovery of this study is the strong correlation (r = 0.96) between excitation and emission maxima across chemically distinct clusteroluminogens. All 157 evaluated peaks fall along a single regression line (Ex = 0.844 Em - 12 nm), a pattern that was not valid for conventional fluorophores. This suggests a general principle of clusteroluminescence. We show that in lignocellulosic materials, peak positions reflect chemical interactions: isolated lignin and cellulose showed short excitation and emission wavelengths, while native wood exhibited longer wavelengths. Fungal or photoinduced degradation led to a further red-shift. These effects are attributed to increased molecular heterogeneity, reducing the effective energy gap within the lignocellulosic complex. We conclude that the spectral position reflects the degree of molecular interaction rather than the chemical structure of individual molecules. It may serve as a novel analytical parameter for assessing purity and degradation in a wide range of polymers.
本研究的一项关键发现是,在化学性质不同的簇发光体中,激发峰和发射峰的最大值之间存在很强的相关性(r = 0.96)。所有157个评估峰都落在一条单一的回归线上(Ex = 0.844 Em - 12 nm),这种模式对传统荧光团无效。这表明了簇发光的一个普遍原理。我们表明,在木质纤维素材料中,峰位置反映了化学相互作用:分离的木质素和纤维素表现出较短的激发和发射波长,而天然木材表现出较长的波长。真菌或光诱导降解导致进一步的红移。这些效应归因于分子异质性增加,降低了木质纤维素复合物内的有效能隙。我们得出结论,光谱位置反映的是分子相互作用的程度,而不是单个分子的化学结构。它可作为评估各种聚合物纯度和降解的一个新的分析参数。