Reza Md Selim, Ghosh Avijit, Anil Kumar Yedluri, Al Imran Md, Alam Khorshed, Rahman Md Mahfuzur, Awwad Nasser S, Ibrahium Hala A
Opt Express. 2025 Jul 14;33(14):30441-30462. doi: 10.1364/OE.566116.
This study aims to develop a sustainable, high-efficiency CsSnBr-based perovskite solar cell (PSC) while eliminating the use of hazardous materials. The proposed device architecture Al/FTO/CdS/CsSnBr/CBTS/Ni (Device I) demonstrates an enhanced fill factor (FF) and an impressive power conversion efficiency (PCE). Key performance variables like perovskite layer depth, defect density, and the effects of series and shunt resistances are critically evaluated. Comparative analysis of various hole transport layers (HTLs: CBTS, PHT, and CuO) and electron transport layers (ETLs: CdS, SnO, and ZnSe) identifies CdS and CBTS as the most effective materials for achieving optimal performance. Simulation results obtained using SCAPS-1D reveal that Device I can achieve a short-circuit current density (J) of 33.084 mA/cm, an open-circuit voltage (V) of 1.111 V, an FF of 88.82%, and a PCE of 32.65% under AM 1.5 solar illumination, with a perovskite thickness of 1.0 µm and ETL/HTL thicknesses of 0.05 µm. Devices II and III recorded PCEs of 30.59% and 23.25%, respectively. In addition, quantum efficiency (QE), carrier dynamics, and temperature effects were thoroughly analyzed. Device I demonstrated significant potential for the development of high-efficiency, fully inorganic CsSnBr-based PSCs. The findings support the viability of CsSnBr as a sustainable and environmentally friendly material for next-generation solar energy technologies.
本研究旨在开发一种可持续、高效的基于CsSnBr的钙钛矿太阳能电池(PSC),同时避免使用有害物质。所提出的器件结构Al/FTO/CdS/CsSnBr/CBTS/Ni(器件I)表现出增强的填充因子(FF)和令人印象深刻的功率转换效率(PCE)。对诸如钙钛矿层深度、缺陷密度以及串联和并联电阻的影响等关键性能变量进行了严格评估。对各种空穴传输层(HTL:CBTS、PHT和CuO)和电子传输层(ETL:CdS、SnO和ZnSe)的比较分析确定,CdS和CBTS是实现最佳性能的最有效材料。使用SCAPS-1D获得的模拟结果表明,在AM 1.5太阳光照下,器件I的钙钛矿厚度为1.0 µm,ETL/HTL厚度为0.05 µm时,短路电流密度(J)可达33.084 mA/cm,开路电压(V)为1.111 V,FF为88.82%,PCE为32.65%。器件II和III的PCE分别为30.59%和23.25%。此外,还对量子效率(QE)、载流子动力学和温度效应进行了全面分析。器件I在开发高效、全无机的基于CsSnBr的PSC方面显示出巨大潜力。这些发现支持了CsSnBr作为下一代太阳能技术的可持续且环保材料的可行性。