Verma Akash Anand, Dwivedi D K
Photonics and Photovoltaic Research Lab(PPRL), Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, India.
Sci Rep. 2025 Jul 28;15(1):27473. doi: 10.1038/s41598-025-93786-9.
Due to extended thermal carrier lifespan, small bandgap, and biocompatibility, tin (Sn)-based perovskite solar cells (PSCs) have garnered attention. Sn-based PSCs (nip-type), however, have performed poorly, mostly because of the careless application of metal oxide electron transport layers (ETLs), which were first created for lead-based PSCs of the nip type. The metal oxides deeper energy levels and oxygen vacancies are too responsible for this underperformance. In order to overcome these problems, we demonstrate a metal chalcogenide ETL, namely Sn(SSe), which prevents the oxidation of Sn and avoids the desorption of oxygen molecules. The variation of several charge transport layers is thoroughly analyzed in this work, indicating that SnS, TiO, and metal-doped Sn(SSe) are viable options to improve the efficiency of the FASnI (Energy gap (E) ≈ 1.41electron volt (eV) PSC. With Sn(SSe) as ETL and PTAA as Hole transport layer (HTL), the PSC's performance is maximized and the optimal performance device structure is attained. For our investigation, the optimal device structure is (Au/PTAA/FASnI/Sn(SSe)/FTO). We obtain an outstanding optimized value of Power conversion efficiency (PCE) 32.22%, Open circuit voltage (V) 1.2762 V, Fill factor (FF) 81.87%, and Short-circuit current density (J) 30.836 mA.cm by carefully evaluating and optimizing a number of variables, such as thickness of active layer, ETL and HTL, Acceptor density (N), Defect density (N) vs. thickness variation, Interface defect (IDD) and temperature variation. These findings provide a viable pathway for enhancing the efficiency of Sn-based PSCs.
由于热载流子寿命延长、带隙小以及生物相容性好,锡(Sn)基钙钛矿太阳能电池(PSC)受到了关注。然而,Sn基PSC(nip型)的性能较差,主要原因是金属氧化物电子传输层(ETL)的不当应用,这些电子传输层最初是为nip型铅基PSC设计的。金属氧化物更深的能级和氧空位对这种性能不佳负有责任。为了克服这些问题,我们展示了一种金属硫族化物ETL,即Sn(SSe),它可以防止Sn的氧化并避免氧分子的解吸。在这项工作中,对几个电荷传输层的变化进行了全面分析,表明SnS、TiO和金属掺杂的Sn(SSe)是提高FASnI(能隙(E)≈1.41电子伏特(eV))PSC效率的可行选择。以Sn(SSe)作为ETL和PTAA作为空穴传输层(HTL),PSC的性能得到最大化,并获得了最佳性能的器件结构。对于我们的研究,最佳器件结构是(Au/PTAA/FASnI/Sn(SSe)/FTO)。通过仔细评估和优化多个变量,如活性层、ETL和HTL的厚度、受体密度(N)、缺陷密度(N)与厚度变化、界面缺陷(IDD)和温度变化等,我们获得了出色的优化功率转换效率(PCE)值32.22%、开路电压(V)1.2762 V、填充因子(FF)81.87%和短路电流密度(J)30.836 mA.cm²。这些发现为提高Sn基PSC的效率提供了一条可行的途径。