Suppr超能文献

用于神经修复的3D打印:弥合再生医学的差距。

3D Printing for Neural Repair: Bridging the Gap in Regenerative Medicine.

作者信息

St Clair-Glover Mitchell, Yue Zhilian, Dottori Mirella

机构信息

School of Medical Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia.

Intelligent Polymer Research Institute, Faculty of Engineering and Information Science, University of Wollongong, Innovation Campus, North Wollongong, NSW, 2500, Australia.

出版信息

Adv Mater. 2025 Sep;37(36):e07590. doi: 10.1002/adma.202507590. Epub 2025 Jul 30.

Abstract

Neurological disorders impose a substantial global health burden, compounded by the limited regenerative capacity of neural tissues and the absence of curative therapies. 3D bioprinting offers a transformative tool to model, replace, and regenerate neural tissues through the precise spatial organization of cells and biomaterials. In this perspective article, recent advances are examined in: i) the development of in vitro neural platforms for disease modeling and drug screening; ii) bioprinted acellular scaffolds designed to guide endogenous neural repair; and iii) cell-laden constructs that aim to replace or reconstruct damaged neural circuits. Key translational challenges are critically evaluated, including vascularization, immune integration, functional maturation, and replicating the complex cytoarchitectures of native neural tissues. Highlighting representative preclinical studies and emerging biofabrication technologies, we discuss how innovations in biomaterials, scaffold design, stem cell biology, and neuroengineering are converging to overcome existing limitations. Through tailored strategies and interdisciplinary collaboration, 3D bioprinting is poised to redefine therapeutic paradigms and drive the development of next-generation, personalized regenerative therapies for neurological diseases and injuries.

摘要

神经疾病给全球健康带来了沉重负担,而神经组织再生能力有限且缺乏治愈性疗法更是雪上加霜。3D生物打印提供了一种变革性工具,可通过细胞和生物材料的精确空间组织来模拟、替代和再生神经组织。在这篇观点文章中,我们探讨了以下方面的最新进展:i)用于疾病建模和药物筛选的体外神经平台的开发;ii)旨在引导内源性神经修复的生物打印脱细胞支架;iii)旨在替代或重建受损神经回路的载细胞构建体。我们对关键的转化挑战进行了批判性评估,包括血管化、免疫整合、功能成熟以及复制天然神经组织的复杂细胞结构。通过突出代表性的临床前研究和新兴的生物制造技术,我们讨论了生物材料、支架设计、干细胞生物学和神经工程学方面的创新如何汇聚在一起以克服现有局限性。通过量身定制的策略和跨学科合作,3D生物打印有望重新定义治疗范式,并推动针对神经疾病和损伤的下一代个性化再生疗法的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bafe/12422090/030122ad9a74/ADMA-37-e07590-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验