Suppr超能文献

嗜极菌对镧系元素的生物吸附:利用微生物胞外多糖回收高价值元素。

Lanthanide bioadsorption by the extremophile sp.: utilizing microbial extracellular polysaccharides for high-value element recovery.

作者信息

Gallardo Karem, Serrano Génesis, Castillo Rodrigo, Michea Sebastián, Urzúa Julio I, Arias Dayana, Remonsellez Francisco

机构信息

Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago, Chile.

Programa de Doctorado en Ingeniería Sustentable, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile.

出版信息

Front Microbiol. 2025 Jul 16;16:1575677. doi: 10.3389/fmicb.2025.1575677. eCollection 2025.

Abstract

Rare Earth Elements (REEs) are essential components in modern technologies but are challenging to extract sustainably. With increasing demand and limited supply, alternative recovery methods such as biosorption have gained attention. In particular, biosorption using extracellular polymeric substances (EPS) offers a promising and environmentally friendly approach. This study explores the potential of sp. SH31, an EPS-producing extremophilic strain, for the biosorption of six REEs (Y, Pr, Nd, Gd, Tb, and Dy) commonly found in spent mobile phones. EPS production and biofilm formation were evaluated in the presence of REEs at concentrations of 0.1 mM and 1 mM, and at pH values of 7, 7.5, and 8. Biosorption capacity was assessed, and characterization was performed using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and transmission electron microscopy (TEM). EPS were extracted using ultrasound and EDTA-based protocols for compositional analysis. The SH31 strain tolerated up to 1 mM REEs at all tested pH levels with minimal physiological changes. EPS production increased slightly in the presence of metals, with compositional variations dependent on extraction method and pH. Ultrasound-extracted EPS showed higher polysaccharide content at pH 7 and increased nucleic acids at pH 8, while EDTA-extracted EPS had more proteins at pH 7 and nucleic acids at pH 8. Biofilm formation increased in the presence of metals at pH 7 and was overall higher at pH 8, although reduced compared to the control. Adsorption capacity peaked at pH 8, reaching 87-99% for all REEs, and fitted well to the Langmuir isotherm model, indicating monolayer biosorption. Desorption efficiencies ranged from 30 to 90%, depending on the metal, pH, and concentration. ATR-FTIR analysis identified hydroxyl and carbonyl groups as key functional groups involved in metal binding, with notable spectral changes after REE exposure. TEM images revealed cell surface deformation and nanoparticle formation, but no intracellular metal accumulation, confirming that adsorption occurs through EPS-mediated surface binding rather than bioaccumulation. These findings highlight the potential of sp. SH31 for REE recovery from e-waste leachates, contributing to sustainable electronic waste revalorization strategies.

摘要

稀土元素(REEs)是现代技术中的重要组成部分,但可持续提取具有挑战性。随着需求的增加和供应的有限,生物吸附等替代回收方法受到了关注。特别是,使用细胞外聚合物(EPS)的生物吸附提供了一种有前景且环保的方法。本研究探讨了嗜极端微生物菌株sp. SH31对废旧手机中常见的六种稀土元素(钇、镨、钕、钆、铽和镝)进行生物吸附的潜力。在稀土元素浓度为0.1 mM和1 mM、pH值为7、7.5和8的条件下评估了EPS的产生和生物膜的形成。评估了生物吸附能力,并使用衰减全反射傅里叶变换红外光谱(ATR-FTIR)和透射电子显微镜(TEM)进行了表征。使用超声和基于乙二胺四乙酸(EDTA)的方案提取EPS进行成分分析。在所有测试的pH水平下,SH31菌株对高达1 mM的稀土元素具有耐受性,生理变化最小。在金属存在的情况下,EPS的产生略有增加,其成分变化取决于提取方法和pH值。超声提取的EPS在pH 7时多糖含量较高,在pH 8时核酸含量增加,而EDTA提取的EPS在pH 7时蛋白质含量较多,在pH 8时核酸含量较多。在pH 7时,金属的存在会增加生物膜的形成,尽管与对照相比有所减少,但总体上在pH 8时更高。吸附容量在pH 8时达到峰值,所有稀土元素的吸附率达到87-99%,并且与朗缪尔等温线模型拟合良好,表明为单层生物吸附。解吸效率范围为30%至90%,具体取决于金属、pH值和浓度。ATR-FTIR分析确定羟基和羰基是参与金属结合的关键官能团,在稀土元素暴露后有明显的光谱变化。TEM图像显示细胞表面变形和纳米颗粒形成,但没有细胞内金属积累,证实吸附是通过EPS介导的表面结合而不是生物积累发生的。这些发现突出了sp. SH31从电子垃圾渗滤液中回收稀土元素的潜力,有助于可持续的电子垃圾再利用策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/12307398/be229b3d43d5/fmicb-16-1575677-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验