Suppr超能文献

利用长短期记忆网络(LSTM)了解新冠病毒疫苗有效性的最新技术。

State-of-the-art learning COVID-19 vaccine effectiveness using LSTM.

作者信息

Shen Chen, Lin Menghan, Lee Yungchun, Dong Ming, Zhao Lili

机构信息

Corewell Research Institute, 3811 W 13 Mile Rd, Royal Oak, MI 48073, United States of America.

Florida State University, 222 S Copeland St, Tallahassee, FL 32306, United States of America.

出版信息

Inform Med Unlocked. 2024;49. doi: 10.1016/j.imu.2024.101561. Epub 2024 Jul 30.

Abstract

The effect of COVID-19 vaccines in reducing hospitalization risks was studied using the Long Short-Term Memory (LSTM) model. We first devised a dynamic environment using an LSTM that characterizes the impact of COVID-19 vaccine administrations on COVID-19 infections in the real-world setting from May 2021 to April 2023. Then, we generated hypothetical subjects with various vaccination profiles (, all subjects received or not received the booster vaccine, or all subjects had followed the vaccine policy) and predicted their counterfactual outcomes based on the LSTM to make inferences on the vaccine effectiveness and estimate the population-averaged risk of infection if there was full compliance for the vaccine policy. Our findings confirm that booster doses significantly reduced the risk of COVID-19 hospitalization while bivalent booster had similar or slightly better effectiveness than the monovalent booster. Additionally, our analysis highlights the importance of adhering to vaccine policies in effectively reducing the risk of hospitalizations. Our study contributes to understanding the dynamics of vaccine efficacy and supports informed decision-making in public health strategies.

摘要

使用长短期记忆(LSTM)模型研究了新冠疫苗在降低住院风险方面的效果。我们首先使用LSTM设计了一个动态环境,该环境描述了2021年5月至2023年4月期间新冠疫苗接种在现实环境中对新冠感染的影响。然后,我们生成了具有不同疫苗接种情况的假设对象(例如,所有对象都接种或未接种加强针,或者所有对象都遵循了疫苗政策),并基于LSTM预测他们的反事实结果,以推断疫苗效果,并估计如果完全遵守疫苗政策,人群平均感染风险。我们的研究结果证实,加强针显著降低了新冠住院风险,而二价加强针的效果与单价加强针相似或略好。此外,我们的分析强调了遵守疫苗政策在有效降低住院风险方面的重要性。我们的研究有助于理解疫苗效力的动态变化,并支持公共卫生策略中的明智决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b006/12308513/4e9ab6a44b7e/nihms-2024813-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验