Suppr超能文献

基于预测模型的脓毒症患者28天死亡率预测:一项回顾性队列研究。

Prediction of 28-day mortality in patients with sepsis based on a predictive model: A retrospective cohort study.

作者信息

Sun Yi, Wang Tingting, Zhang Mengna, Cao Shuchen, Hua Liwei, Zhang Kun

机构信息

Department of Intensive Care Unit, Affiliated Hospital of Chengde Medical University, Chengde Medical University, China.

Department of Emergency, Affiliated Hospital of Chengde Medical University, Chengde Medical University, China.

出版信息

J Int Med Res. 2025 Aug;53(8):3000605251361104. doi: 10.1177/03000605251361104. Epub 2025 Jul 31.

Abstract

ObjectiveThis study aimed to develop and validate a nomogram model for predicting 28-day mortality in patients with sepsis in the intensive care unit.MethodsThe health care records of 613 patients with sepsis who were hospitalized at the Affiliated Hospital of Chengde Medical University from 2022 to 2024 were retrospectively reviewed. Patients were randomly divided into training and testing sets in a 7:3 ratio. The least absolute shrinkage and selection operator regression method was used to identify potential prognostic factors for sepsis, followed by multivariate logistic regression to construct a nomogram prediction model. The predictive performance of the developed model was evaluated via receiver operating characteristic curves, decision curve analysis, and calibration curves.ResultsThe predictive factors included the platelet distribution width to count ratio, mean platelet volume, N-terminal proB-type natriuretic peptide level, lactate level, respiratory tract infections, and diabetes. The area under the receiver operating characteristic curve for the nomogram model in the training set was 0.907, with sensitivity and specificity values of 0.846 and 0.831, respectively. The calibration curve demonstrated that the prediction results were consistent with the actual findings. Decision curve analysis revealed that the model showed robust performance in practical applications.ConclusionsPlatelet distribution width to count ratio, mean platelet volume, N-terminal proB-type natriuretic peptide level, lactate level, respiratory tract infection, and diabetes are closely associated with sepsis. A nomogram model based on these six variables demonstrates remarkable predictive performance and may assist clinicians in identifying high-risk patients and optimizing personalized therapy.

摘要

目的

本研究旨在开发并验证一种用于预测重症监护病房脓毒症患者28天死亡率的列线图模型。

方法

回顾性分析2022年至2024年在承德医学院附属医院住院的613例脓毒症患者的医疗记录。患者按7:3的比例随机分为训练集和测试集。采用最小绝对收缩和选择算子回归方法确定脓毒症的潜在预后因素,然后进行多因素逻辑回归以构建列线图预测模型。通过受试者工作特征曲线、决策曲线分析和校准曲线评估所开发模型的预测性能。

结果

预测因素包括血小板分布宽度与计数比值、平均血小板体积、N末端B型利钠肽原水平、乳酸水平、呼吸道感染和糖尿病。训练集中列线图模型的受试者工作特征曲线下面积为0.907,敏感性和特异性值分别为0.846和0.831。校准曲线表明预测结果与实际结果一致。决策曲线分析显示该模型在实际应用中表现出强大的性能。

结论

血小板分布宽度与计数比值、平均血小板体积、N末端B型利钠肽原水平、乳酸水平、呼吸道感染和糖尿病与脓毒症密切相关。基于这六个变量的列线图模型具有显著的预测性能,可能有助于临床医生识别高危患者并优化个性化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db14/12317214/579c4de8cfe7/10.1177_03000605251361104-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验