文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

负载磁性纳米颗粒的大鼠心脏的玻璃化与复温

Vitrification and Rewarming of Magnetic Nanoparticle-Loaded Rat Hearts.

作者信息

Gao Zhe, Namsrai Baterdene, Han Zonghu, Joshi Purva, Rao Joseph Sushil, Ravikumar Vasanth, Sharma Anirudh, Ring Hattie L, Idiyatullin Djaudat, Magnuson Elliott C, Iaizzo Paul A, Tolkacheva Elena G, Garwood Michael, Rabin Yoed, Etheridge Michael, Finger Erik B, Bischof John C

机构信息

Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE., Minneapolis, MN 55455, USA.

Department of Surgery, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA.

出版信息

Adv Mater Technol. 2022 Mar;7(3). doi: 10.1002/admt.202100873. Epub 2021 Oct 1.


DOI:10.1002/admt.202100873
PMID:35668819
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9164386/
Abstract

To extend the preservation of donor hearts beyond the current 4-6 h, this paper explores heart cryopreservation by vitrification-cryogenic storage in a glass-like state. While organ vitrification is made possible by using cryoprotective agents (CPA) that inhibit ice during cooling, failure occurs during convective rewarming due to slow and non-uniform rewarming which causes ice crystallization and/or cracking. Here an alternative, "nanowarming", which uses silica-coated iron oxide nanoparticles (sIONPs) perfusion loaded through the vasculature is explored, that allows a radiofrequency coil to rewarm the organ quickly and uniformly to avoid convective failures. Nanowarming has been applied to cells and tissues, and a proof of principle study suggests it is possible in the heart, but proper physical and biological characterization especially in organs is still lacking. Here, using a rat heart model, controlled machine perfusion loading and unloading of CPA and sIONPs, cooling to a vitrified state, and fast and uniform nanowarming without crystallization or cracking is demonstrated. Further, nanowarmed hearts maintain histologic appearance and endothelial integrity superior to convective rewarming and indistinguishable from CPA load/unload control hearts while showing some promising organ-level (electrical) functional activity. This work demonstrates physically successful heart vitrification and nanowarming and that biological outcomes can be expected to improve by reducing or eliminating CPA toxicity during loading and unloading.

摘要

为了将供体心脏的保存时间延长至目前的4 - 6小时以上,本文探索了通过玻璃化 - 低温储存将心脏保存在类玻璃状态。虽然使用在冷却过程中抑制结冰的冷冻保护剂(CPA)使器官玻璃化成为可能,但在对流复温过程中会出现失败,原因是复温缓慢且不均匀,导致冰晶形成和/或破裂。在此探索了一种替代方法“纳米复温”,即通过血管系统灌注加载二氧化硅包覆的氧化铁纳米颗粒(sIONP),这使得射频线圈能够快速且均匀地使器官复温,以避免对流失败。纳米复温已应用于细胞和组织,一项原理验证研究表明在心脏中也是可行的,但仍缺乏适当的物理和生物学特征描述,尤其是在器官方面。在此,使用大鼠心脏模型,展示了对CPA和sIONP进行可控的机器灌注加载和卸载、冷却至玻璃化状态以及快速且均匀的纳米复温而不出现结晶或破裂。此外,经纳米复温的心脏在组织学外观和内皮完整性方面优于对流复温,与CPA加载/卸载对照心脏无差异,同时显示出一些有前景的器官水平(电)功能活性。这项工作证明了心脏玻璃化和纳米复温在物理上的成功,并且可以预期通过减少或消除加载和卸载过程中CPA的毒性来改善生物学结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e14e/9164386/83338681b199/nihms-1745591-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e14e/9164386/fb5f359ec82e/nihms-1745591-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e14e/9164386/c4059b171d2e/nihms-1745591-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e14e/9164386/dfbc499a3ac4/nihms-1745591-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e14e/9164386/2786feea2991/nihms-1745591-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e14e/9164386/5d9edeaead27/nihms-1745591-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e14e/9164386/a261b988520c/nihms-1745591-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e14e/9164386/83338681b199/nihms-1745591-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e14e/9164386/fb5f359ec82e/nihms-1745591-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e14e/9164386/c4059b171d2e/nihms-1745591-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e14e/9164386/dfbc499a3ac4/nihms-1745591-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e14e/9164386/2786feea2991/nihms-1745591-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e14e/9164386/5d9edeaead27/nihms-1745591-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e14e/9164386/a261b988520c/nihms-1745591-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e14e/9164386/83338681b199/nihms-1745591-f0008.jpg

相似文献

[1]
Vitrification and Rewarming of Magnetic Nanoparticle-Loaded Rat Hearts.

Adv Mater Technol. 2022-3

[2]
Vitrification and Nanowarming of Kidneys.

Adv Sci (Weinh). 2021-10

[3]
Cryopreservation of Whole Rat Livers by Vitrification and Nanowarming.

Ann Biomed Eng. 2023-3

[4]
A guide to successful mL to L scale vitrification and rewarming.

Cryo Letters. 2022

[5]
Thermomechanical stress analyses of nanowarming-assisted recovery from cryopreservation by vitrification in human heart and rat heart models.

PLoS One. 2023

[6]
Preparation of Scalable Silica-Coated Iron Oxide Nanoparticles for Nanowarming.

Adv Sci (Weinh). 2020-1-7

[7]
Improved tissue cryopreservation using inductive heating of magnetic nanoparticles.

Sci Transl Med. 2017-3-1

[8]
Vitrification and nanowarming enable long-term organ cryopreservation and life-sustaining kidney transplantation in a rat model.

Nat Commun. 2023-6-9

[9]
Thermal Analyses of Nanowarming-Assisted Recovery of the Heart From Cryopreservation by Vitrification.

J Heat Transfer. 2022-3-1

[10]
The impact of heart valve and partial heart transplant models on the development of banking methods for tissues and organs: A concise review.

Cryobiology. 2024-6

引用本文的文献

[1]
Higher glass transition temperatures reduce thermal stress cracking in aqueous solutions relevant to cryopreservation.

Sci Rep. 2025-7-31

[2]
High-Throughput Evaluation of Cryoprotective Agents for Mixture Effects That Reduce Toxicity.

bioRxiv. 2025-5-8

[3]
Dielectric properties of individual cryoprotective agents and cocktails VS55, M22, DP6 at subzero temperatures for cryopreservation.

Sci Rep. 2025-7-1

[4]
Tissue Preservation and Access: Modern Innovation in Biobanking Moving Forwards a Personalized Treatment.

J Pers Med. 2025-5-7

[5]
Automated device for rapid sample cooling via controlled submersion.

Cryobiology. 2025-6

[6]
Beyond the icebox: modern strategies in organ preservation for transplantation.

Clin Transplant Res. 2024-12-31

[7]
Physical vitrification and nanowarming at human organ scale to enable cryopreservation.

bioRxiv. 2024-11-11

[8]
The Inhibition of Interfacial Ice Formation and Stress Accumulation with Zwitterionic Betaine and Trehalose for High-Efficiency Skin Cryopreservation.

Research (Wash D C). 2024-11-14

[9]
Current practice and novel approaches in organ preservation.

Front Transplant. 2023-6-8

[10]
Hypothermic and cryogenic preservation of cardiac tissue-engineered constructs.

Biomater Sci. 2024-7-23

本文引用的文献

[1]
Scaling Effects on the Residual Thermomechanical Stress During Ice-Free Cooling to Storage Temperature.

J Appl Mech. 2020-10-1

[2]
Perfusion, cryopreservation, and nanowarming of whole hearts using colloidally stable magnetic cryopreservation agent solutions.

Sci Adv. 2021-1-8

[3]
Thermal conductivity of cryoprotective agents loaded with nanoparticles, with application to recovery of preserved tissues and organs from cryogenic storage.

PLoS One. 2020-9-17

[4]
Ever-Evolving Identity of Magnetic Nanoparticles within Human Cells: The Interplay of Endosomal Confinement, Degradation, Storage, and Neocrystallization.

Acc Chem Res. 2020-10-20

[5]
Diffusion Limited Cryopreservation of Tissue with Radiofrequency Heated Metal Forms.

Adv Healthc Mater. 2020-10

[6]
Nanovesicles derived from iron oxide nanoparticles-incorporated mesenchymal stem cells for cardiac repair.

Sci Adv. 2020-5

[7]
Preparation of Scalable Silica-Coated Iron Oxide Nanoparticles for Nanowarming.

Adv Sci (Weinh). 2020-1-7

[8]
OPTN/SRTR 2018 Annual Data Report: Heart.

Am J Transplant. 2020-1

[9]
Remote Magnetic Nanoparticle Manipulation Enables the Dynamic Patterning of Cardiac Tissues.

Adv Mater. 2019-12-13

[10]
Imaging the distribution of iron oxide nanoparticles in hypothermic perfused tissues.

Magn Reson Med. 2020-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索