Carletti Mattia, Pandit Jay, Gadaleta Matteo, Chiang Danielle, Delgado Felipe, Quartuccio Katie, Fernandez Brianna, Raygoza Garay Juan Antonio, Torkamani Ali, Miotto Riccardo, Rossman Hagai, Berk Benjamin, Baca-Motes Katie, Kheterpal Vik, Segal Eran, Topol Eric J, Ramos Edward, Quer Giorgio
Scripps Research Translational Institute, La Jolla, CA, USA.
Tempus AI, Chicago, IL, USA.
Nat Med. 2025 Jul 31. doi: 10.1038/s41591-025-03849-7.
Type 2 diabetes (T2D) is a multifaceted disease associated with several factors, including diet, genetics, exercise, sleep and gut microbiome. Current diagnostic and monitoring methods based on episodic assays like glycated hemoglobin (HbA1c) fail to capture its full complexity. Here, in a prospective cohort of 1,137 participants in the United States, we analyzed multimodal data from 347 deeply phenotyped individuals (174 normoglycemic, 79 prediabetic and 94 T2D). We found significant differences in the distribution of glucose spike metrics among different diabetes states, with longer expected time for spike resolution and higher values of nocturnal hypoglycemia in T2D. We identified significant correlations between mean glucose level and gut microbiome diversity, and between expected time for spike resolution and resting heart rate. Our multimodal glycemic risk profiles, validated in 1,955 normoglycemic and 114 prediabetic individuals from an independent cohort, improved risk stratification by highlighting substantial variability among individuals with the same value of HbA1c. Such a multimodal approach provides a detailed phenotype that can potentially improve T2D prevention, diagnosis and treatment, and is more informative than HbA1c.
2型糖尿病(T2D)是一种多因素疾病,与多种因素相关,包括饮食、遗传、运动、睡眠和肠道微生物群。目前基于糖化血红蛋白(HbA1c)等间歇性检测的诊断和监测方法无法全面反映其复杂性。在此,在美国一个由1137名参与者组成的前瞻性队列中,我们分析了347名深度表型个体(174名血糖正常、79名糖尿病前期和94名T2D患者)的多模态数据。我们发现不同糖尿病状态下葡萄糖峰值指标的分布存在显著差异,T2D患者的峰值消退预期时间更长,夜间低血糖值更高。我们确定了平均血糖水平与肠道微生物群多样性之间以及峰值消退预期时间与静息心率之间存在显著相关性。我们的多模态血糖风险概况在来自独立队列的1955名血糖正常个体和114名糖尿病前期个体中得到验证,通过突出HbA1c值相同个体之间的显著变异性,改善了风险分层。这种多模态方法提供了一个详细的表型,有可能改善T2D的预防、诊断和治疗,并且比HbA1c更具信息性。