Wang Yucen, Zhang Zhuoyu, Li Guoqiang
Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing 100871, China.
NAR Genom Bioinform. 2025 Jul 31;7(3):lqaf106. doi: 10.1093/nargab/lqaf106. eCollection 2025 Sep.
Spatially mapping the cellular positions and their microenvironments with spatial transcriptomics (ST) shows great potential to illustrate key factors and mechanisms driving complex tissue organizations. The spatial data require specialized handling with different statistical and inferential considerations. Here, we develop SPECTRUM (Spatial Pattern Enhanced Cellular and Tissue Recognition Unified Method), which combines inclusive prior known cell-type-specific markers and spatial weighting for cell-type identification and spatial community detection. Comprehensive benchmarks demonstrate the superior performance of SPECTRUM. Applying SPECTRUM on real ST datasets with various spatial patterns demonstrates its capability in correctly mapping region-specific cell types and functional spatial communities. With that, we uncovered that context-dependent communication supports the functional plasticity of cells in spatial communities in human limb development. In summary, SPECTRUM is a unified tool for ST data analysis that deepens our insights into spatial organization at molecular, cellular, and community levels.
利用空间转录组学(ST)对细胞位置及其微环境进行空间映射,在阐明驱动复杂组织组织的关键因素和机制方面显示出巨大潜力。空间数据需要特殊处理,并考虑不同的统计和推理因素。在这里,我们开发了SPECTRUM(空间模式增强细胞和组织识别统一方法),它结合了包含性的先前已知细胞类型特异性标记和空间加权,用于细胞类型识别和空间群落检测。综合基准测试证明了SPECTRUM的卓越性能。将SPECTRUM应用于具有各种空间模式的真实ST数据集,证明了其正确映射区域特异性细胞类型和功能性空间群落的能力。通过这样做,我们发现上下文依赖的通讯支持人类肢体发育中空间群落中细胞的功能可塑性。总之,SPECTRUM是一种用于ST数据分析的统一工具,它加深了我们对分子、细胞和群落水平空间组织的理解。