Suppr超能文献

空间模式增强了空间转录组学的细胞和组织识别能力。

Spatial pattern enhanced cellular and tissue recognition for spatial transcriptomics.

作者信息

Wang Yucen, Zhang Zhuoyu, Li Guoqiang

机构信息

Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing 100871, China.

出版信息

NAR Genom Bioinform. 2025 Jul 31;7(3):lqaf106. doi: 10.1093/nargab/lqaf106. eCollection 2025 Sep.

Abstract

Spatially mapping the cellular positions and their microenvironments with spatial transcriptomics (ST) shows great potential to illustrate key factors and mechanisms driving complex tissue organizations. The spatial data require specialized handling with different statistical and inferential considerations. Here, we develop SPECTRUM (Spatial Pattern Enhanced Cellular and Tissue Recognition Unified Method), which combines inclusive prior known cell-type-specific markers and spatial weighting for cell-type identification and spatial community detection. Comprehensive benchmarks demonstrate the superior performance of SPECTRUM. Applying SPECTRUM on real ST datasets with various spatial patterns demonstrates its capability in correctly mapping region-specific cell types and functional spatial communities. With that, we uncovered that context-dependent communication supports the functional plasticity of cells in spatial communities in human limb development. In summary, SPECTRUM is a unified tool for ST data analysis that deepens our insights into spatial organization at molecular, cellular, and community levels.

摘要

利用空间转录组学(ST)对细胞位置及其微环境进行空间映射,在阐明驱动复杂组织组织的关键因素和机制方面显示出巨大潜力。空间数据需要特殊处理,并考虑不同的统计和推理因素。在这里,我们开发了SPECTRUM(空间模式增强细胞和组织识别统一方法),它结合了包含性的先前已知细胞类型特异性标记和空间加权,用于细胞类型识别和空间群落检测。综合基准测试证明了SPECTRUM的卓越性能。将SPECTRUM应用于具有各种空间模式的真实ST数据集,证明了其正确映射区域特异性细胞类型和功能性空间群落的能力。通过这样做,我们发现上下文依赖的通讯支持人类肢体发育中空间群落中细胞的功能可塑性。总之,SPECTRUM是一种用于ST数据分析的统一工具,它加深了我们对分子、细胞和群落水平空间组织的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84a8/12311794/bde2ebed6fea/lqaf106fig1.jpg

相似文献

1
Spatial pattern enhanced cellular and tissue recognition for spatial transcriptomics.
NAR Genom Bioinform. 2025 Jul 31;7(3):lqaf106. doi: 10.1093/nargab/lqaf106. eCollection 2025 Sep.
2
Linking transcriptome and morphology in bone cells at cellular resolution with generative AI.
J Bone Miner Res. 2024 Dec 31;40(1):20-26. doi: 10.1093/jbmr/zjae151.
6
Refinement strategies for Tangram for reliable single-cell to spatial mapping.
Bioinformatics. 2025 Jul 1;41(Supplement_1):i552-i560. doi: 10.1093/bioinformatics/btaf194.
7
Spatial proteomics and transcriptomics characterization of tissue and multiple cancer types including decalcified marrow.
Cancer Biomark. 2025 Jan;42(1):18758592241308757. doi: 10.1177/18758592241308757. Epub 2025 Mar 20.

本文引用的文献

1
A comprehensive review of approaches for spatial domain recognition of spatial transcriptomes.
Brief Funct Genomics. 2024 Dec 6;23(6):702-712. doi: 10.1093/bfgp/elae040.
2
Intercellular genetic tracing by alternative synthetic Notch signaling.
Cell Discov. 2024 Oct 15;10(1):101. doi: 10.1038/s41421-024-00721-9.
3
Inferring pattern-driving intercellular flows from single-cell and spatial transcriptomics.
Nat Methods. 2024 Oct;21(10):1806-1817. doi: 10.1038/s41592-024-02380-w. Epub 2024 Aug 26.
4
Spatiotemporal omics for biology and medicine.
Cell. 2024 Aug 22;187(17):4488-4519. doi: 10.1016/j.cell.2024.07.040.
5
6
Multiscale topology classifies cells in subcellular spatial transcriptomics.
Nature. 2024 Jun;630(8018):943-949. doi: 10.1038/s41586-024-07563-1. Epub 2024 Jun 19.
7
Accurate and efficient integrative reference-informed spatial domain detection for spatial transcriptomics.
Nat Methods. 2024 Jul;21(7):1231-1244. doi: 10.1038/s41592-024-02284-9. Epub 2024 Jun 6.
8
Tissue fibroblasts are versatile immune regulators: An evaluation of their impact on the aging process.
Ageing Res Rev. 2024 Jun;97:102296. doi: 10.1016/j.arr.2024.102296. Epub 2024 Apr 7.
9
BANKSY unifies cell typing and tissue domain segmentation for scalable spatial omics data analysis.
Nat Genet. 2024 Mar;56(3):431-441. doi: 10.1038/s41588-024-01664-3. Epub 2024 Feb 27.
10
The diversification of methods for studying cell-cell interactions and communication.
Nat Rev Genet. 2024 Jun;25(6):381-400. doi: 10.1038/s41576-023-00685-8. Epub 2024 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验