Bozzini Benedetto, Sodini Nicola, Kao Alexander P, Veneziano Alessio, Mancini Lucia
Department of Energy, Politecnico di Milano, v. Lambruschini 4, 20156 Milano, Italy.
Elettra - Sincrotrone Trieste S.C.p.A., S.S. 14 - km 163.5 in Area Science Park, 34149 Basovizza (Trieste), Italy.
ACS Appl Energy Mater. 2025 Jul 14;8(14):10265-10276. doi: 10.1021/acsaem.5c01110. eCollection 2025 Jul 28.
The fabrication of engineered Zn anodes often relies on different forms of ZnO as the material in direct contact with the alkaline aqueous electrolyte in the pristine assembled cell state. Of course, in this case, the as-assembled cell is in the discharged state and requires an initial charging step, or "formation", to generate active metallic Zn. The formation of ZnO-based anodes is a complex process the control of which calls for an in-depth understanding of electrochemical phase growth. In fact, formation gives rise to morphochemical imprinting, profoundly impacting the electrode functional performance. The present work contributes to the understanding of the formation of Zn sponge electrodes, combining electrochemistry and synchrotron-based X-ray imaging. Specifically, we employed dynamic radiography to select the potentiostatic formation conditions that exclude hydrogen-induced damaging of the sponge structure. Subsequently, formation and the subsequent first discharge are followed by time-lapse tomography, allowing to track the early structural evolution of the sponge electrode and the Zn/ZnO phase distribution.
工程化锌阳极的制备通常依赖于不同形式的氧化锌作为与原始组装电池状态下的碱性水性电解质直接接触的材料。当然,在这种情况下,组装好的电池处于放电状态,需要初始充电步骤或“形成过程”来生成活性金属锌。基于氧化锌的阳极的形成是一个复杂的过程,对其控制需要深入了解电化学相生长。事实上,形成过程会产生形态化学印记,深刻影响电极的功能性能。本工作结合电化学和基于同步加速器的X射线成像,有助于理解锌海绵电极的形成过程。具体而言,我们采用动态射线照相术来选择恒电位形成条件,以排除氢对海绵结构的破坏。随后,通过延时断层扫描跟踪形成过程和随后的首次放电,从而能够追踪海绵电极的早期结构演变以及锌/氧化锌相分布。