Zhang Alan C, Álvarez-Chico Alejandro, Salagre Elena, Gonzalez Martin, Spataru Catalin D, Sugar Joshua D, Gross Adam L, González-Barrio Miguel A, Segovia Pilar, Tallarida Massimo, Dai Ji, Kumar Suhas, Talin A Alec, Hwang Harold Y, Michel Enrique G, Mascaraque Arantzazu, Fuller Elliot J
Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States of America.
Dto. Física de Materiales, Univ. Complutense de Madrid, Madrid 28040, Spain.
ACS Nano. 2025 Aug 12;19(31):28422-28431. doi: 10.1021/acsnano.5c06879. Epub 2025 Aug 1.
The insertion of electron-donating ions has emerged as a powerful technique to manipulate the electronic structure of correlated oxides. However, the resulting electronic structure remains poorly understood, with challenges in quantifying dopant concentration, unexplained differences with substitutionally doped films, and a poor understanding of how dopant atoms interact with insulator-metal transitions (IMTs). Here, these issues are addressed in the context of the rare earth nickelates, a prototypical correlated oxide family with widely tunable electronic behavior under the insertion of protons and alkali metals as interstitial dopants. RNiO (R = Pr, Nd) epitaxial thin films are synthesized, lithium dopants are introduced and quantified using electrochemical and synchrotron-based techniques, and the resulting electronic structure is studied. From electronic transport measurements of LiRNiO, lithium is found to affect the metal-insulator transition, causing more than an order of magnitude reduction in ground-state resistivity at fractions < 0.18, a systematic lowering of transition temperature, and successively smaller ON/OFF ratios over 0.00 < < 0.25. At larger fractions > 0.25, the transition is destroyed, and insulating behavior is observed over = 5-300 K. Angle-resolved photoemission (ARPES) confirms transport results and reveals band renormalization occurring over 0.10 < ≤ 0.71. ARPES and X-ray absorption spectroscopy (XAS) combined with density functional theory indicate that rigid band filling models are generally insufficient to explain doping from lithium, especially at low temperatures, but could approximate room temperature effects in the low doping regime ( < 0.10). Broadly, the results indicate that interstitial dopants lead to complex interactions with metal-insulator transitions and the emergence of an exciting family of correlated electronic phases.
插入供电子离子已成为一种操纵关联氧化物电子结构的强大技术。然而,由此产生的电子结构仍知之甚少,存在掺杂剂浓度量化方面的挑战、与替代掺杂薄膜存在无法解释的差异,以及对掺杂原子如何与绝缘体 - 金属转变(IMT)相互作用的理解不足。在此,这些问题在稀土镍酸盐的背景下得到解决,稀土镍酸盐是一类典型的关联氧化物家族,在质子和碱金属作为间隙掺杂剂插入时具有广泛可调的电子行为。合成了RNiO(R = Pr,Nd)外延薄膜,使用电化学和基于同步加速器的技术引入并量化锂掺杂剂,并研究由此产生的电子结构。通过对LiRNiO的电子输运测量发现,锂会影响金属 - 绝缘体转变,在分数<0.18时导致基态电阻率降低超过一个数量级,系统地降低转变温度,并且在0.00 << 0.25范围内开/关比逐渐减小。在较大分数>0.25时,转变被破坏,在= 5 - 300 K范围内观察到绝缘行为。角分辨光电子能谱(ARPES)证实了输运结果,并揭示了在0.10 <≤ 0.71范围内发生的能带重整化。ARPES和X射线吸收光谱(XAS)与密度泛函理论相结合表明,刚性带填充模型通常不足以解释锂掺杂,特别是在低温下,但在低掺杂区域(<0.10)可以近似室温效应。总体而言,结果表明间隙掺杂剂会导致与金属 - 绝缘体转变的复杂相互作用以及一系列令人兴奋的关联电子相的出现。