Mout Rubul, Jing Ran, Tanaka-Yano Mayuri, Egan Emily D, Eisenach Helen, Kononov Martin A, Windisch Roland, Najia Mohamad Ali Toufic, Tompkins Allison, Hensch Luca, Bingham Trevor, Gunage Rajesh, Zhao Yunliang, Edman Natasha I, Li Christopher, Wang Dahai, Schlaeger Thorsten M, Zon Leonard I, North Trista E, Lendahl Urban, Rowe R Grant, Baker David, Blacklow Stephen C, Daley George Q
Stem Cell & Regenerative Biology Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
Stem Cell & Regenerative Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.
Cell. 2025 Jul 29. doi: 10.1016/j.cell.2025.07.009.
The rational design of receptor agonists to control cell signaling is an emerging strategy for developing disease therapeutics. Creating a soluble cytokine-like agonist for the Notch receptor, which regulates cell fate in embryonic and adult development, is challenging, as receptor activation requires a mechanical force that is usually mediated by cell-associated transmembrane ligands. Here, we exploit computationally designed protein complexes with precise valencies and geometries to generate soluble cytokine-like Notch agonists. These molecules promote cell-cell bridging, cluster Notch receptors at cell synapses, and activate receptor signaling. We show that these agonists drive T cell differentiation from cord blood progenitors and human induced pluripotent stem cells (iPSCs) and in bioreactor production of T cells in liquid suspension. When delivered intravenously in mice, they stimulate cytokine production, expansion of antigen-specific CD4 T cells, and antibody class switching. These de-novo-designed ligands can be broadly applied to optimize in vitro cell differentiation and advance immunotherapy development.
合理设计受体激动剂以控制细胞信号传导是开发疾病治疗方法的一种新兴策略。为Notch受体创建一种可溶性细胞因子样激动剂具有挑战性,因为Notch受体在胚胎和成年发育过程中调节细胞命运,而受体激活需要一种通常由细胞相关跨膜配体介导的机械力。在这里,我们利用通过计算设计的具有精确化合价和几何形状的蛋白质复合物来生成可溶性细胞因子样Notch激动剂。这些分子促进细胞间桥接,在细胞突触处聚集Notch受体,并激活受体信号传导。我们表明,这些激动剂可驱动脐带血祖细胞和人诱导多能干细胞(iPSC)分化为T细胞,并在液体悬浮液中通过生物反应器生产T细胞。当静脉注射到小鼠体内时,它们会刺激细胞因子产生、抗原特异性CD4 T细胞扩增和抗体类别转换。这些从头设计的配体可广泛应用于优化体外细胞分化并推动免疫治疗发展。