Department of Biochemistry, University of Washington, Seattle, WA 98195.
Institute for Protein Design, University of Washington, Seattle, WA 98195.
Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2309457121. doi: 10.1073/pnas.2309457121. Epub 2024 Jan 30.
Relating the macroscopic properties of protein-based materials to their underlying component microstructure is an outstanding challenge. Here, we exploit computational design to specify the size, flexibility, and valency of de novo protein building blocks, as well as the interaction dynamics between them, to investigate how molecular parameters govern the macroscopic viscoelasticity of the resultant protein hydrogels. We construct gel systems from pairs of symmetric protein homo-oligomers, each comprising 2, 5, 24, or 120 individual protein components, that are crosslinked either physically or covalently into idealized step-growth biopolymer networks. Through rheological assessment, we find that the covalent linkage of multifunctional precursors yields hydrogels whose viscoelasticity depends on the crosslink length between the constituent building blocks. In contrast, reversibly crosslinking the homo-oligomeric components with a computationally designed heterodimer results in viscoelastic biomaterials exhibiting fluid-like properties under rest and low shear, but solid-like behavior at higher frequencies. Exploiting the unique genetic encodability of these materials, we demonstrate the assembly of protein networks within living mammalian cells and show via fluorescence recovery after photobleaching (FRAP) that mechanical properties can be tuned intracellularly in a manner similar to formulations formed extracellularly. We anticipate that the ability to modularly construct and systematically program the viscoelastic properties of designer protein-based materials could have broad utility in biomedicine, with applications in tissue engineering, therapeutic delivery, and synthetic biology.
将蛋白质基材料的宏观性质与其基础组成微结构联系起来是一个突出的挑战。在这里,我们利用计算设计来指定从头设计的蛋白质构建块的大小、灵活性和价态,以及它们之间的相互作用动力学,以研究分子参数如何控制所得蛋白质水凝胶的宏观粘弹性。我们构建了由对称蛋白质同聚体组成的凝胶系统,每个同聚体由 2、5、24 或 120 个单独的蛋白质组成,这些蛋白质通过物理交联或共价交联成理想的逐步增长的生物聚合物网络。通过流变学评估,我们发现多功能前体的共价键合产生的水凝胶的粘弹性取决于组成构建块之间的交联长度。相比之下,用计算设计的杂二聚体可逆交联同聚体组分会导致粘弹性生物材料在静止和低剪切下表现出类似流体的性质,但在更高频率下表现出类似固体的行为。利用这些材料独特的遗传可编码性,我们展示了在活哺乳动物细胞内组装蛋白质网络,并通过光漂白后荧光恢复 (FRAP) 表明可以以类似于细胞外形成的配方的方式在细胞内调节力学性能。我们预计,模块化构建和系统地编程设计的基于蛋白质的材料的粘弹性特性的能力在生物医学中有广泛的应用,可应用于组织工程、治疗药物输送和合成生物学。