Guo Mengmeng, Su Jingyong, Sun Li, Cao Guofeng
Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, USA.
Present address: School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), China.
J Appl Stat. 2019 Sep 25;47(1):28-44. doi: 10.1080/02664763.2019.1669541. eCollection 2020.
We develop a multivariate regression model when responses or predictors are on nonlinear manifolds, rather than on Euclidean spaces. The nonlinear constraint makes the problem challenging and needs to be studied carefully. By performing principal component analysis (PCA) on tangent space of manifold, we use principal directions instead in the model. Then, the ordinary regression tools can be utilized. We apply the framework to both shape data (ozone hole contours) and functional data (spectrums of absorbance of meat in Tecator dataset). Specifically, we adopt the square-root velocity function representation and parametrization-invariant metric. Experimental results have shown that we can not only perform powerful regression analysis on the non-Euclidean data but also achieve high prediction accuracy by the constructed model.
当响应变量或预测变量位于非线性流形上而非欧几里得空间时,我们开发了一种多元回归模型。非线性约束使得该问题具有挑战性,需要仔细研究。通过在流形的切空间上执行主成分分析(PCA),我们在模型中改用主方向。然后,可以使用普通的回归工具。我们将该框架应用于形状数据(臭氧空洞轮廓)和函数数据(Tecator数据集中肉类吸光度光谱)。具体而言,我们采用平方根速度函数表示和参数化不变度量。实验结果表明,我们不仅可以对非欧几里得数据进行强大的回归分析,还可以通过构建的模型实现较高的预测精度。