Suppr超能文献

不确定性不耐受的不同组成部分与强迫症症状之间的关系:一项网络分析。

Relationships between different components of intolerance of uncertainty and symptoms of obsessive-compulsive disorder: a network analysis.

作者信息

Ding XiaoBin, Zhao Ze, Wang Jie, Chen Chen, Ding ShuChan, Gao JingYi, Deng Jun, Liu Dan

机构信息

School of Psychology, The Northwest Normal University, Lanzhou, Gansu, China.

Mental Health Education Centre, Nanchong Vocational and Technical College, Nanchong, Sichuan, China.

出版信息

PeerJ. 2025 Jul 31;13:e19791. doi: 10.7717/peerj.19791. eCollection 2025.

Abstract

BACKGROUND

Previous studies have shown that intolerance of uncertainty (IU) and obsessive-compulsive disorder (OCD) are closely interrelated. This reliance on scale totals to measure symptom severity obscures the distinctions and connections between different symptoms. In the present study, we explored the relationships between different components of IU and symptoms of OCD.

METHODS

We recruited 1,616 participants and retained 1,529 pieces of valid data. Components of IU were measured by the Chinese version of the Intolerance of Uncertainty Scale-Short Form, and symptoms of OCD were measured by the Chinese version of the Obsessive-Compulsive Inventory-Revised. The present study employs network analysis to examine both core and bridging symptoms within the context of the IU and OCD networks.

RESULTS

In the overall network, the nodes with the highest expected influence (EI) were OCD3 ("I get upset if things don't work out"), IU6 ("I can't stand being taken by surprise"), and OCD6 ("It's hard for me to control my thoughts"). The nodes with the highest bridge expected influence (BEI) were OCD3 ("I get upset if things don't work out"), OCD9 ("I get upset when people change my plans"), and IU12 ("I must get away from all uncertain situations"). Within the IU community, the strongest edge was between IU1 ("Unforeseen events upset me greatly") and IU2 ("It frustrates me not having all the information I need"). Within the OCD community, the strongest edge was between OCD10 ("I force myself to repeat certain numbers") and OCD11 ("Sometimes, I force myself to bathe or wash myself because I feel dirty"). The strongest edge connecting the IU and OCD communities was between IU10 ("When I am uncertain I can't function very well") and OCD6 ("It's hard for me to control my thoughts"). No significant gender differences were found in the network structure.

CONCLUSIONS

This study revealed specific component-symptom patterns between different facets of intolerance of uncertainty (IU) and various obsessive-compulsive symptoms. Understanding how distinct components of IU-an assumed risk factor-relate to specific OCD symptoms may inform targeted prevention and intervention strategies. For example, interventions aimed at OCD3, IU6, OCD9, and IU12 may effectively reduce the severity of obsessive-compulsive symptoms among Chinese university students, enhance their ability to cope with uncertainty, and help disrupt the reciprocal influence between IU components and OCD symptoms.

摘要

背景

以往研究表明,不确定性不耐受(IU)与强迫症(OCD)密切相关。这种依赖量表总分来衡量症状严重程度的方式模糊了不同症状之间的区别和联系。在本研究中,我们探讨了IU的不同组成部分与OCD症状之间的关系。

方法

我们招募了1616名参与者,并保留了1529份有效数据。IU的组成部分通过中文版的不确定性不耐受量表简版进行测量,OCD症状通过中文版的强迫症量表修订版进行测量。本研究采用网络分析来考察IU和OCD网络中的核心症状和桥梁症状。

结果

在整体网络中,预期影响力(EI)最高的节点是OCD3(“如果事情不顺利,我会心烦意乱”)、IU6(“我无法忍受被意外吓到”)和OCD6(“我很难控制自己的想法”)。桥梁预期影响力(BEI)最高的节点是OCD3(“如果事情不顺利,我会心烦意乱”)、OCD9(“当人们改变我的计划时,我会心烦意乱”)和IU12(“我必须远离所有不确定的情况”)。在IU群落中,最强的边存在于IU1(“意外事件让我非常心烦意乱”)和IU2(“没有我需要的所有信息让我感到沮丧”)之间。在OCD群落中,最强的边存在于OCD10(“我强迫自己重复某些数字”)和OCD11(“有时,我强迫自己洗澡或洗漱,因为我觉得自己脏”)之间。连接IU和OCD群落的最强边存在于IU10(“当我不确定时,我无法很好地发挥作用”)和OCD6(“我很难控制自己的想法”)之间。在网络结构中未发现显著的性别差异。

结论

本研究揭示了不确定性不耐受(IU)的不同方面与各种强迫症状之间特定的组成部分 - 症状模式。了解作为假定风险因素的IU的不同组成部分如何与特定的OCD症状相关,可能为有针对性的预防和干预策略提供依据。例如,针对OCD3、IU6、OCD9和IU12的干预措施可能有效降低中国大学生强迫症状的严重程度,增强他们应对不确定性的能力,并有助于打破IU组成部分与OCD症状之间的相互影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/12318506/5094dfba6bca/peerj-13-19791-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验