Suppr超能文献

高强度飞秒X射线驱动下硅中电子动力学的建模

Modeling electron dynamics in silicon driven by high-intensity femtosecond x-rays.

作者信息

Cardoch Sebastian, Timneanu Nicusor

机构信息

Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.

出版信息

Struct Dyn. 2025 Aug 1;12(4):044101. doi: 10.1063/4.0000299. eCollection 2025 Jul.

Abstract

High-intensity femtosecond-duration x-rays from free electron lasers have enabled innovative imaging techniques that employ smaller crystal sizes than conventional crystallography. Developments aimed at increasing x-ray pulse intensities bring opportunities and constraints due to ultra-fast changes to atomic scattering form factors from electron dynamics. Experiments on silicon by Inoue [Inoue , Phys. Rev. Lett. , 163201 (2023)] illustrate this by measuring diffraction efficiencies with increasing x-ray pulse intensities. Results at the highest experimental x-ray pulse intensity have been theoretically studied [Inoue , Phys. Rev. Lett. , 163201 (2023); Ziaja , Atoms , 154 (2023)] but not fully reproduced, which raises questions about the mechanisms behind these changes. Using collisional radiative simulations and relativistic configuration-averaged atomic data, we compute the ionization dynamics and diffraction efficiency of silicon and find good agreement within the experimental uncertainty. We incorporate the effects of ionization potential depression by removing energy levels close to the ionization threshold over selected charge states. We identify the main electron impact mechanisms present in our simulations. We bridge the gap between high and low intensity and find regimes where electronic damage affects the efficiency of high- and low-momentum transfer. We computationally examine the effects of free electron degeneracy and find that it does not influence ionization dynamics. Finally, we consider how a non-thermal electron distribution may modify our results. This investigation gives insight into the mechanisms and helps guide future experiments that utilize intense x-ray pulses to achieve high-resolution structural determination.

摘要

自由电子激光产生的高强度飞秒持续时间的X射线,使得创新成像技术成为可能,这些技术所采用的晶体尺寸比传统晶体学更小。旨在提高X射线脉冲强度的发展带来了机遇和限制,因为电子动力学导致原子散射形状因子发生超快变化。井上等人在硅上进行的实验[井上,《物理评论快报》,163201 (2023)] 通过测量随X射线脉冲强度增加的衍射效率对此进行了说明。在最高实验X射线脉冲强度下的结果已在理论上进行了研究[井上,《物理评论快报》,163201 (2023);齐亚亚,《原子》,154 (2023)],但尚未完全重现,这引发了关于这些变化背后机制的问题。我们使用碰撞辐射模拟和相对论构型平均原子数据,计算了硅的电离动力学和衍射效率,并在实验不确定性范围内找到了良好的一致性。我们通过去除选定电荷态下接近电离阈值的能级,纳入了电离势降低的影响。我们确定了模拟中存在的主要电子碰撞机制。我们弥合了高强度和低强度之间的差距,找到了电子损伤影响高动量和低动量转移效率的区域。我们通过计算研究了自由电子简并的影响,发现它不会影响电离动力学。最后,我们考虑非热电子分布可能如何改变我们的结果。这项研究深入了解了相关机制,并有助于指导未来利用强X射线脉冲实现高分辨率结构测定的实验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/821e/12317780/c4a9847d9512/SDTYAE-000012-044101_1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验