Chapman Henry N, Li Chufeng, Bajt Saša, Butola Mansi, Dresselhaus J Lukas, Egorov Dmitry, Fleckenstein Holger, Ivanov Nikolay, Kiene Antonia, Klopprogge Bjarne, Kremling Viviane, Middendorf Philipp, Oberthuer Dominik, Prasciolu Mauro, Scheer T Emilie S, Sprenger Janina, Wong Jia Chyi, Yefanov Oleksandr, Zakharova Margarita, Zhang Wenhui
Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany.
Struct Dyn. 2025 Jan 9;12(1):014301. doi: 10.1063/4.0000275. eCollection 2025 Jan.
Sub-ångström spatial resolution of electron density coupled with sub-femtosecond to few-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation, such as by soft X-rays. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear degrees of freedom couple, enable the study of quantum coherences involved in molecular dynamics, and ultimately enable these dynamics to be controlled. Here, we propose to reach this realm by employing convergent-beam x-ray crystallography with high-power attosecond pulses from a hard-x-ray free-electron laser. We show that with dispersive optics, such as multilayer Laue lenses of high numerical aperture, it becomes possible to encode time into the resulting diffraction pattern with deep sub-femtosecond precision. Each snapshot diffraction pattern consists of Bragg streaks that can be mapped back to arrival times and positions of X-rays on the face of a crystal. This can span tens of femtoseconds and can be finely sampled as we demonstrate experimentally. The approach brings several other advantages, such as an increase in the number of observable reflections in a snapshot diffraction pattern, all fully integrated, to improve the speed and accuracy of serial crystallography-especially for crystals of small molecules.
要直接观测光激发或其他超快扰动(如通过软X射线)后分子电子结构的动力学,需要亚埃级的电子密度空间分辨率以及亚飞秒到几个飞秒的时间分辨率。迎接这一挑战,将量子晶体学领域推进到阿秒时间尺度,将有助于深入了解电子和核自由度如何耦合,能够研究分子动力学中涉及的量子相干性,并最终实现对这些动力学的控制。在此,我们提议通过使用来自硬X射线自由电子激光的高功率阿秒脉冲的会聚束X射线晶体学来进入这个领域。我们表明,利用色散光学元件,如高数值孔径的多层劳厄透镜,就有可能以深亚飞秒精度将时间编码到所得的衍射图样中。每个快照衍射图样由布拉格条纹组成,这些条纹可以映射回X射线在晶体表面的到达时间和位置。这可以跨越几十飞秒,并且正如我们通过实验所证明的,可以进行精细采样。该方法还带来了其他几个优点,例如在一个快照衍射图样中可观测反射数量的增加,所有这些都是完全集成的,以提高串行晶体学的速度和准确性——特别是对于小分子晶体。