Suppr超能文献

简短报告:高强度运动后通过汗液乳酸和出汗率估算血液乳酸动力学——一项基于回归的初步研究。

Short Report: Estimating Blood Lactate Dynamics from Sweat Lactate and Sweat Rate After High-Intensity Exercise - A Pilot Regression-Based Study.

作者信息

Hattori Masaaki, Yashiro Kazuya

机构信息

Department of Community Development, Tokai University, Sapporo, Hokkaido, Japan.

Faculty of Information Technology, Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan.

出版信息

Open Access J Sports Med. 2025 Jul 30;16:99-105. doi: 10.2147/OAJSM.S534243. eCollection 2025.

Abstract

BACKGROUND

Blood lactate (BL) is a critical biomarker for assessing anaerobic metabolism and fatigue. Sweat lactate (SWL) and sweat rate (SWR) have been explored as non-invasive alternatives, but their capacity to estimate BL dynamics after short-term high-intensity exercise remains unclear.

PURPOSE

This pilot study aimed to evaluate whether BL dynamics can be predicted using a regression model based on the time-series patterns of SWL and SWR measured by wearable sensors.

METHODS

Five healthy male athletes (three sprinters and two endurance runners) performed a 30-second Wingate anaerobic test. SWL and SWR were continuously monitored using a wearable electrochemical sensor and a ventilated capsule-type sweat rate meter. Capillary BL was sampled for 30 minutes post-exercise.

RESULTS

BL showed a delayed peak at 6.4 ± 1.2 min, while SWL and SWR exhibited biphasic responses. The second SWL peak (7.5 ± 2.2 min) aligned with the BL peak. Although peak-based correlations were not significant, Pearson correlations using time-series data revealed strong associations (r = 0.501-0.933 for SWL; r = 0.515-0.805 for SWR; all p < 0.001). A multivariate regression model using both variables predicted BL with high accuracy ( = 0.763, RMSE = 1.612, MAE = 0.995, p < 0.001).

CONCLUSION

These findings support the feasibility of a regression-based approach using sweat-derived time-series data to non-invasively estimate BL dynamics after high-intensity exercise.

摘要

背景

血乳酸(BL)是评估无氧代谢和疲劳的关键生物标志物。汗液乳酸(SWL)和出汗率(SWR)已被探索作为非侵入性替代指标,但其在短期高强度运动后估计血乳酸动态变化的能力仍不明确。

目的

本初步研究旨在评估是否可以使用基于可穿戴传感器测量的SWL和SWR时间序列模式的回归模型来预测血乳酸动态变化。

方法

五名健康男性运动员(三名短跑运动员和两名耐力跑运动员)进行了30秒的温盖特无氧测试。使用可穿戴电化学传感器和通风胶囊式出汗率计连续监测SWL和SWR。运动后30分钟采集毛细血管血乳酸样本。

结果

血乳酸在6.4±1.2分钟出现延迟峰值,而SWL和SWR呈现双相反应。SWL的第二个峰值(7.5±2.2分钟)与血乳酸峰值一致。尽管基于峰值的相关性不显著,但使用时间序列数据的Pearson相关性显示出强关联(SWL的r = 0.501 - 0.933;SWR的r = 0.515 - 0.805;所有p < 0.001)。使用这两个变量的多元回归模型能够高精度地预测血乳酸( = 0.763,RMSE = 1.612,MAE = 0.995,p < 0.001)。

结论

这些发现支持了一种基于回归的方法的可行性,即使用汗液衍生的时间序列数据来无创估计高强度运动后的血乳酸动态变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5e9/12318520/52a4c8621d9c/OAJSM-16-99-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验