Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA.
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA.
Sci Rep. 2024 Apr 2;14(1):7710. doi: 10.1038/s41598-024-58121-8.
Alzheimer's Disease (AD) is a progressive neurodegenerative disease and the leading cause of dementia. Early diagnosis is critical for patients to benefit from potential intervention and treatment. The retina has emerged as a plausible diagnostic site for AD detection owing to its anatomical connection with the brain. However, existing AI models for this purpose have yet to provide a rational explanation behind their decisions and have not been able to infer the stage of the disease's progression. Along this direction, we propose a novel model-agnostic explainable-AI framework, called Granu r Neuron-le el Expl iner (LAVA), an interpretation prototype that probes into intermediate layers of the Convolutional Neural Network (CNN) models to directly assess the continuum of AD from the retinal imaging without the need for longitudinal or clinical evaluations. This innovative approach aims to validate retinal vasculature as a biomarker and diagnostic modality for evaluating Alzheimer's Disease. Leveraged UK Biobank cognitive tests and vascular morphological features demonstrate significant promise and effectiveness of LAVA in identifying AD stages across the progression continuum.
阿尔茨海默病(AD)是一种进行性神经退行性疾病,也是痴呆症的主要病因。早期诊断对于患者从潜在的干预和治疗中获益至关重要。由于视网膜与大脑具有解剖学上的联系,因此它已成为 AD 检测的一个合理的诊断部位。然而,目前用于此目的的 AI 模型尚未为其决策提供合理的解释,也无法推断疾病进展的阶段。沿着这个方向,我们提出了一个新的无模型可解释 AI 框架,称为 Granu r Neuron-le vel Explainer(LAVA),这是一个解释原型,它可以深入研究卷积神经网络(CNN)模型的中间层,直接从视网膜成像评估 AD 的连续过程,而无需进行纵向或临床评估。这种创新方法旨在验证视网膜血管作为评估阿尔茨海默病的生物标志物和诊断方式的有效性。利用英国生物库认知测试和血管形态特征,证明了 LAVA 在识别整个进展连续体中的 AD 阶段方面具有显著的潜力和有效性。