Rahman Arifur, Khan Md Azam, Bishnu Kanchon Kumar, Rozario Uland, Ishraq Adit, Mridha M F, Aung Zeyar
School of Business, International American University, Los Angeles, CA, USA.
Department of Computer Science, California State University, Los Angeles, CA, USA.
Sci Rep. 2025 Aug 4;15(1):28371. doi: 10.1038/s41598-025-12464-y.
Cross-cultural sentiment analysis in restaurant reviews presents unique challenges due to linguistic and cultural differences across regions. The purpose of this study is to develop a culturally adaptive sentiment analysis model that improves sentiment detection across multilingual restaurant reviews. This paper proposes XLM-RSA, a novel multilingual model based on XLM-RoBERTa with Aspect-Focused Attention, tailored for enhanced sentiment analysis across diverse cultural contexts. We evaluated XLM-RSA on three benchmark datasets: 10,000 Restaurant Reviews, Restaurant Reviews, and European Restaurant Reviews, achieving state-of-the-art performance across all datasets. XLM-RSA attained an accuracy of 91.9% on the Restaurant Reviews dataset, surpassing traditional models such as BERT (87.8%) and RoBERTa (88.5%). In addition to sentiment classification, we introduce an aspect-based attention mechanism to capture sentiment variations specific to key aspects like food, service, and ambiance, yielding aspect-level accuracy improvements. Furthermore, XLM-RSA demonstrated strong performance in detecting cultural sentiment shifts, with an accuracy of 85.4% on the European Restaurant Reviews dataset, showcasing its robustness to diverse linguistic and cultural expressions. An ablation study highlighted the significance of the Aspect-Focused Attention, where XLM-RSA with this enhancement achieved an F1-score of 91.5%, compared to 89.1% with a simple attention mechanism. These results affirm XLM-RSA's capacity for effective cross-cultural sentiment analysis, paving the way for more accurate sentiment-driven insights in globally distributed customer feedback.
由于不同地区存在语言和文化差异,餐厅评论中的跨文化情感分析面临着独特的挑战。本研究的目的是开发一种具有文化适应性的情感分析模型,以提高跨多语言餐厅评论的情感检测能力。本文提出了XLM-RSA,这是一种基于XLM-RoBERTa并带有聚焦方面注意力的新型多语言模型,专为在不同文化背景下增强情感分析而量身定制。我们在三个基准数据集上对XLM-RSA进行了评估:10000条餐厅评论、餐厅评论和欧洲餐厅评论,在所有数据集上均取得了领先的性能。XLM-RSA在餐厅评论数据集上的准确率达到了91.9%,超过了诸如BERT(87.8%)和RoBERTa(88.5%)等传统模型。除了情感分类,我们还引入了一种基于方面的注意力机制,以捕捉特定于食物、服务和氛围等关键方面的情感变化,从而提高方面级的准确率。此外,XLM-RSA在检测文化情感转变方面表现出色,在欧洲餐厅评论数据集上的准确率为85.4%,展示了其对各种语言和文化表达的鲁棒性。一项消融研究突出了聚焦方面注意力的重要性,增强后的XLM-RSA的F1分数达到了91.5%,而简单注意力机制的F1分数为89.1%。这些结果证实了XLM-RSA进行有效跨文化情感分析的能力,为在全球分布的客户反馈中获得更准确的情感驱动见解铺平了道路。