Abdelkader Mennatallah S, Abdalla Salah, Abdelrahman Ali A, Amin Ibrahim A, Ramadan Mohammed, Salah Mohammed
Department of Microbiology and Immunology, Faculty of Pharmacy, Port-Said University, Port-Said, Egypt.
Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
Sci Rep. 2025 Aug 4;15(1):28460. doi: 10.1038/s41598-025-13705-w.
Soil microbiome plays a crucial role in ecosystem; however, the responses of the soil microbiome to nonconventional irrigation water sources remain poorly understood. This study employed 16 S rRNA sequencing to investigate microbial community shifts in soil samples collected from four geographically distinct locations affected by different irrigation water sources: saline ground water affected by seawater (SW), a brackish water lake (BW), a wastewater drain (WW), and a freshwater canal that receives inflows from multiple agricultural drains (FW). Our findings revealed distinct microbial signatures shaped by water quality, with Firmicutes dominating WW soils (49.2%) due to metal resistance (DESeq2, p = 3.67 × 10), whereas Chloroflexi and Cyanobacteria thrived in BW environments (LEfSe, LDA > 4, p = 8.23 × 10), reflecting adaptations to chloride-rich conditions. FW soils enriched Acidobacteria and Verrucomicrobia, which are associated with moderate salinity and nutrient cycling, whereas SW samples harbored halotolerant Actinobacteria and Deinococcus-Thermus (DESeq2, p = 1.47x). Statistical analyses revealed key potential biomarkers, including Streptococcus (WW, DESeq2 p = 3.67x), RB41 (BW, LEfSe p = 1.62x), and Candidatus_Udaeobacter (SW, DESeq2 p = 1.47x). Physicochemical drivers such as salinity (R² =0.319, p = 0.00041) and heavy metals (Pb/Mn in WW) strongly influence community structure. Notably, WW irrigation reduced alpha diversity (Shannon index: 4.79-5.41 vs. 6.65-7.43 in FW; Kruskal-Wallis p = 0.0056), highlighting pollutant-induced stress. These findings highlight the balance between water reuse and soil health, offering a foundation for microbiome-driven bioremediation approaches in arid environments. By utilizing native, stress-resilient microbial communities, our research promotes sustainable agricultural practices in water-limited regions.
土壤微生物群落在生态系统中起着至关重要的作用;然而,土壤微生物群落对非常规灌溉水源的响应仍知之甚少。本研究采用16S rRNA测序技术,调查了从四个地理位置不同、受不同灌溉水源影响的地点采集的土壤样本中的微生物群落变化:受海水影响的咸水地下水(SW)、微咸水湖(BW)、废水排放渠(WW)以及接收多个农业排水渠水流的淡水运河(FW)。我们的研究结果揭示了由水质塑造的独特微生物特征,由于具有金属抗性,厚壁菌门在WW土壤中占主导地位(49.2%)(DESeq2,p = 3.67×10),而绿弯菌门和蓝细菌在BW环境中大量繁殖(LEfSe,LDA>4,p = 8.23×10),这反映了对富含氯化物条件的适应。FW土壤中富集了与中度盐度和养分循环相关的酸杆菌门和疣微菌门,而SW样本中含有耐盐放线菌和嗜热栖热放线菌(DESeq2,p = 1.47x)。统计分析揭示了关键的潜在生物标志物,包括链球菌(WW,DESeq2 p = 3.67x)、RB41(BW,LEfSe p = 1.62x)和候选乌代杆菌(SW,DESeq2 p = 1.47x)。盐度(R² = 0.319,p = 0.00041)和重金属(WW中的铅/锰)等理化驱动因素强烈影响群落结构。值得注意的是,WW灌溉降低了α多样性(香农指数:FW为6.65 - 7.43,WW为4.79 - 5.41;Kruskal - Wallis p = 0.0056),突出了污染物引起的压力。这些发现突出了水再利用与土壤健康之间的平衡,为干旱环境中微生物群驱动的生物修复方法提供了基础。通过利用本地的、具有抗逆性的微生物群落,我们的研究促进了水资源有限地区的可持续农业实践。