Suppr超能文献

利用智能眼镜技术提升紧急医疗服务,以在模拟危重症患者护理场景中实现救护车的最佳定位。

Enhancing Emergency Medical Services with Smart Glasses Technology for Optimal Ambulance Positioning in Simulated Critical Patient Care Scenarios.

作者信息

Apiratwarakul Korakot, Khemtong Sukanya, Cheung Lap Woon, Pearkao Chatkhane, Ienghong Kamonwon

机构信息

Department of Emergency Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.

Accident & Emergency Department, Princess Margaret Hospital, Kowloon, Hong Kong.

出版信息

J Multidiscip Healthc. 2025 Jul 29;18:4309-4316. doi: 10.2147/JMDH.S535090. eCollection 2025.

Abstract

PURPOSE

To implement smart glasses with augmented reality distance measuring technologies in conventional self-assessment techniques, to improve ambulance location accuracy during simulated emergency scenarios.

PATIENTS AND METHODS

Eighty-two emergency medical services professionals participated in this simulation-based study at Srinagarind Hospital, Thailand. Participants positioned ambulances in simulated chemical, biological, radiological, nuclear, and explosives (CBRNE) and non-CBRNE scenarios using traditional self-assessment methods, followed by positioning using smart glasses technology after a 120-minute training session. Smart glasses equipped with a measurement-augmented reality application were utilized. Positioning accuracy was assessed.

RESULTS

The participants had a median age of 36.1 years, with males comprising the majority (63.4%). Emergency nurse practitioners and students constituted the largest group (56.1%). Most participants (51.1%) reported over a decade of EMS experience. Smart glasses technology significantly improved positioning accuracy in both scenario types (p<0.001). In CBRNE scenarios, accuracy increased from 47.6% with self-assessment to 83.3% with smart glasses. In non-CBRNE scenarios, accuracy improved from 66.7% to 83.8%.

CONCLUSION

Smart glasses technology with augmented reality distance measurement capabilities substantially enhances ambulance positioning accuracy, particularly in complex CBRNE scenarios. The technology's ability to standardize performance across emergency types, and potentially across responder experience levels, suggests significant value for improving emergency medical service delivery, patient care, and responder safety.

摘要

目的

在传统的自我评估技术中应用具有增强现实测距技术的智能眼镜,以提高模拟紧急情况下救护车的定位准确性。

患者与方法

82名紧急医疗服务专业人员参与了泰国诗里拉医院开展的这项基于模拟的研究。参与者在模拟的化学、生物、放射、核和爆炸物(CBRNE)及非CBRNE场景中,先用传统的自我评估方法定位救护车,然后在经过120分钟的培训后,使用智能眼镜技术进行定位。使用了配备测量增强现实应用程序的智能眼镜。评估定位准确性。

结果

参与者的年龄中位数为36.1岁,男性占大多数(63.4%)。急诊执业护士和学生占最大群体(56.1%)。大多数参与者(51.1%)报告有超过十年的紧急医疗服务经验。智能眼镜技术在两种场景类型中均显著提高了定位准确性(p<0.001)。在CBRNE场景中,自我评估时的定位准确率为47.6%,使用智能眼镜时提高到83.3%。在非CBRNE场景中,准确率从66.7%提高到83.8%。

结论

具有增强现实测距功能的智能眼镜技术可大幅提高救护车定位准确性,尤其是在复杂的CBRNE场景中。该技术能够在不同紧急情况类型中,甚至可能在不同应急人员经验水平之间实现性能标准化,这表明其在改善紧急医疗服务、患者护理和应急人员安全方面具有重大价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78f2/12318846/e279cb286261/JMDH-18-4309-g0001.jpg

相似文献

3
Smart Glasses with Augmented Reality Workflow; A Modern Tool for Triage in Mass Casualty Incidents.
Arch Acad Emerg Med. 2025 Jun 2;13(1):e53. doi: 10.22037/aaemj.v13i1.2661. eCollection 2025.
5
Emergency Medical Services Streaming Enabled Evaluation In Trauma: The SEE-IT Feasibility RCT.
Health Soc Care Deliv Res. 2025 May 28:1-38. doi: 10.3310/EUFS2314.
6
Computer and mobile technology interventions for self-management in chronic obstructive pulmonary disease.
Cochrane Database Syst Rev. 2017 May 23;5(5):CD011425. doi: 10.1002/14651858.CD011425.pub2.
8
The Perinatal Committee report: Review of the progress of obstetric healthcare in Japan.
J Obstet Gynaecol Res. 2025 Jul;51(7):e16354. doi: 10.1111/jog.16354.
9
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.

本文引用的文献

1
Understanding EMS response times: a machine learning-based analysis.
BMC Med Inform Decis Mak. 2025 Mar 24;25(1):143. doi: 10.1186/s12911-025-02975-z.
3
Development of a Mobile App Game for Practicing Lung Exercises: Feasibility Study.
JMIR Rehabil Assist Technol. 2025 Mar 4;12:e63512. doi: 10.2196/63512.
5
Development of an AI-Integrated Smart Helmet for Motorcycle Accident Prevention: A Feasibility Study.
J Multidiscip Healthc. 2025 Feb 18;18:957-968. doi: 10.2147/JMDH.S508679. eCollection 2025.
7
8
A Systematic Literature Review of Trauma Systems: An Operations Management Perspective.
Adv Rehabil Sci Pract. 2025 Jan 16;14:27536351241310645. doi: 10.1177/27536351241310645. eCollection 2025 Jan-Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验