Marques Mariana, Hayashide Lívia de Sá, Amorim Pedro, Fernandes Beatriz Martins, Araujo Ana Paula Bergamo, Messor Daniel Fernandes, Leocadio Vitor Emanuel, Pessoa Bruna, Corrêa João Bastos Lima Pacca, Villablanca Cristopher, Vidal René L, González-Billault Christian, Matias Isadora, Gomes Flávia Carvalho Alcantara, Diniz Luan Pereira
Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Cell and Neuronal Dynamics Laboratory, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.
J Neurochem. 2025 Aug;169(8):e70177. doi: 10.1111/jnc.70177.
Aging is a complex biological process that significantly impacts the central nervous system (CNS). Astrocytes, critical support cells in the brain, undergo senescence with age, contributing to neurodegenerative diseases. While previous studies have utilized murine models to investigate astrocyte senescence, human astrocytes offer a more physiologically relevant system to study age-related neurodegenerative changes. This study presents a novel protocol for inducing senescence in both human primary and murine astrocytes using a combination of cellular stressors, such as lactacystin, HO, rotenone, and doxorubicin. Our results demonstrate that doxorubicin treatment effectively induces a robust senescent phenotype in both human and murine astrocytes, characterized by increased expression of senescence markers such as p21 and β-galactosidase, along with activation of the DNA damage response (γ-H2AX and 53BP1). Doxorubicin treatment increased nuclear size and induced cell cycle arrest in astrocytes, as revealed by reduced BrdU incorporation and decreased cell density, without inducing cytotoxic effects. This phenotype is accompanied by a pronounced pro-inflammatory profile, with elevated expression of cytokines including MMP3, IL-6, and IL-1β, indicative of a strong senescence-associated secretory phenotype (SASP). These findings provide a novel in vitro model for murine and human astrocyte senescence induced by doxorubicin, highlighting its relevance for studying mechanisms underlying age-related neuroinflammation and neurodegeneration. By establishing a robust model of human astrocyte senescence, this study provides a valuable tool for exploring the molecular and cellular mechanisms driving age-related neurodegenerative processes, serving as an alternative approach to traditional murine models.
衰老 是一个复杂的生物学过程,对中枢神经系统(CNS)有重大影响。星形胶质细胞是大脑中的关键支持细胞,会随着年龄增长而衰老,这会导致神经退行性疾病。虽然之前的研究利用小鼠模型来研究星形胶质细胞衰老,但人类星形胶质细胞为研究与年龄相关的神经退行性变化提供了一个更具生理相关性的系统。本研究提出了一种新方案,使用诸如乳胞素、HO、鱼藤酮和阿霉素等细胞应激源的组合,在人类原代和小鼠星形胶质细胞中诱导衰老。我们的结果表明,阿霉素处理能有效诱导人类和小鼠星形胶质细胞产生强大的衰老表型,其特征是衰老标志物如p21和β-半乳糖苷酶的表达增加,同时伴有DNA损伤反应(γ-H2AX和53BP1)的激活。阿霉素处理增加了星形胶质细胞的核大小并诱导细胞周期停滞,这通过减少BrdU掺入和降低细胞密度得以揭示,且未诱导细胞毒性作用。这种表型伴随着明显的促炎特征,包括MMP3、IL-6和IL-1β等细胞因子的表达升高,表明存在强烈的衰老相关分泌表型(SASP)。这些发现为阿霉素诱导的小鼠和人类星形胶质细胞衰老提供了一种新的体外模型,突出了其在研究与年龄相关的神经炎症和神经退行性变潜在机制方面的相关性。通过建立强大的人类星形胶质细胞衰老模型,本研究为探索驱动与年龄相关的神经退行性过程的分子和细胞机制提供了一个有价值的工具,作为传统小鼠模型的替代方法。