Paddenberg-Schubert Eva, Midlej Kareem, Krohn Sebastian, Kuchler Erika, Watted Nezar, Proff Peter, Iraqi Fuad A
Department of Orthodontics, University Hospital of Regensburg, University of Regensburg, 93047, Regensburg, Germany.
Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
Clin Oral Investig. 2025 Aug 5;29(8):396. doi: 10.1007/s00784-025-06485-0.
Precisely diagnosing skeletal class is mandatory for correct orthodontic treatment. Artificial intelligence (AI) could increase efficiency during diagnostics and contribute to automated workflows. So far, no AI-driven process can differentiate between skeletal classes I, II, and III in German orthodontic patients. This prospective cross-sectional study aimed to develop machine- and deep-learning models for diagnosing their skeletal class based on the gold-standard individualised ANB of Panagiotidis and Witt.
Orthodontic patients treated in Germany contributed to the study population. Pre-treatment cephalometric parameters, sex, and age served as input variables. Machine-learning models performed were linear discriminant analysis (LDA), random forest (RF), decision tree (DT), K-nearest neighbours (KNN), support vector machine (SVM), Gaussian naïve Bayes (NB), and multi class logistic regression (MCLR). Furthermore, an artificial neural network (ANN) was conducted.
1277 German patients presented skeletal class I (48.79%), II (27.56%) and III (23.64%). The best machine-learning model, which considered all input parameters, was RF with 100% accuracy, with Calculated_ANB being the most important (0.429). The model with Calculated_ANB only achieved 100% accuracy (KNN), but ANB alone was inappropriate (71-76% accuracy). The ANN with all parameters and Calculated_ANB achieved 95.31% and 100% validation-accuracy, respectively.
Machine- and deep-learning methods can correctly determine an individual's skeletal class. Calculated_ANB was the most important among all input parameters, which, therefore, requires precise determination.
The AI methods introduced may help to establish digital and automated workflows in cephalometric diagnostics, which could contribute to the relief of the orthodontic practitioner.
准确诊断骨骼类型对于正确的正畸治疗至关重要。人工智能(AI)可以提高诊断效率并有助于实现自动化工作流程。到目前为止,在德国正畸患者中,尚无AI驱动的流程能够区分骨骼I类、II类和III类。这项前瞻性横断面研究旨在基于Panagiotidis和Witt的金标准个体化ANB开发用于诊断骨骼类型的机器学习和深度学习模型。
在德国接受治疗的正畸患者构成了研究人群。治疗前的头影测量参数、性别和年龄作为输入变量。所执行的机器学习模型包括线性判别分析(LDA)、随机森林(RF)、决策树(DT)、K近邻(KNN)、支持向量机(SVM)、高斯朴素贝叶斯(NB)和多类逻辑回归(MCLR)。此外,还进行了人工神经网络(ANN)分析。
1277名德国患者呈现出骨骼I类(48.79%)、II类(27.56%)和III类(23.64%)。考虑所有输入参数的最佳机器学习模型是RF,准确率为100%,其中Calculated_ANB最为重要(0.429)。仅使用Calculated_ANB的模型也达到了100%的准确率(KNN),但仅使用ANB则不合适(准确率为71 - 76%)。包含所有参数和Calculated_ANB的ANN分别达到了95.31%和100%的验证准确率。
机器学习和深度学习方法可以正确确定个体的骨骼类型。Calculated_ANB在所有输入参数中最为重要,因此需要精确测定。
所引入的AI方法可能有助于在头影测量诊断中建立数字化和自动化工作流程,这可能有助于减轻正畸医生的负担。