Suppr超能文献

利用头影测量分析数据通过人工智能进行颌面形态分类

Classification of Maxillofacial Morphology by Artificial Intelligence Using Cephalometric Analysis Measurements.

作者信息

Ueda Akane, Tussie Cami, Kim Sophie, Kuwajima Yukinori, Matsumoto Shikino, Kim Grace, Satoh Kazuro, Nagai Shigemi

机构信息

Division of Orthodontics, Department of Developmental Oral Health Science, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka 020-8505, Iwate, Japan.

Department of Restorative Dentistry and Biomaterial Sciences, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.

出版信息

Diagnostics (Basel). 2023 Jun 21;13(13):2134. doi: 10.3390/diagnostics13132134.

Abstract

The characteristics of maxillofacial morphology play a major role in orthodontic diagnosis and treatment planning. While Sassouni's classification scheme outlines different categories of maxillofacial morphology, there is no standardized approach to assigning these classifications to patients. This study aimed to create an artificial intelligence (AI) model that uses cephalometric analysis measurements to accurately classify maxillofacial morphology, allowing for the standardization of maxillofacial morphology classification. This study used the initial cephalograms of 220 patients aged 18 years or older. Three orthodontists classified the maxillofacial morphologies of 220 patients using eight measurements as the accurate classification. Using these eight cephalometric measurement points and the subject's gender as input features, a random forest classifier from the Python sci-kit learning package was trained and tested with a k-fold split of five to determine orthodontic classification; distinct models were created for horizontal-only, vertical-only, and combined maxillofacial morphology classification. The accuracy of the combined facial classification was 0.823 ± 0.060; for anteroposterior-only classification, the accuracy was 0.986 ± 0.011; and for the vertical-only classification, the accuracy was 0.850 ± 0.037. ANB angle had the greatest feature importance at 0.3519. The AI model created in this study accurately classified maxillofacial morphology, but it can be further improved with more learning data input.

摘要

颌面部形态特征在正畸诊断和治疗计划中起着重要作用。虽然萨苏尼的分类方案概述了不同类型的颌面部形态,但对于将这些分类应用于患者并没有标准化的方法。本研究旨在创建一种人工智能(AI)模型,该模型使用头影测量分析来准确分类颌面部形态,从而实现颌面部形态分类的标准化。本研究使用了220名18岁及以上患者的初始头影测量片。三名正畸医生使用八项测量指标对220名患者的颌面部形态进行了准确分类。以这八个头影测量点和受试者的性别作为输入特征,使用Python科学计算工具包中的随机森林分类器进行训练,并采用五折交叉验证进行测试,以确定正畸分类;分别创建了仅用于水平、仅用于垂直以及用于综合颌面部形态分类的不同模型。综合面部分类的准确率为0.823±0.060;仅前后向分类的准确率为0.986±0.011;仅垂直向分类的准确率为0.850±0.037。ANB角的特征重要性最高,为0.3519。本研究创建的人工智能模型能够准确分类颌面部形态,但通过输入更多学习数据可进一步改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/199b/10340345/f526f17a0dcb/diagnostics-13-02134-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验