Xu Hua, Guo Zongkai, Cao Yu, Cheng Xu, Zhang Qiong, Chen Dan
School of Information Science and Control Engineering, Liaoning Petrochemical University, Fushun, 113005, China.
Liaoning Meteorological Equipment Support Center, Shenyang, 110166, China.
Sci Rep. 2024 Dec 30;14(1):31885. doi: 10.1038/s41598-024-83365-9.
Precipitation forecasting is vital for managing disasters, urban traffic, and agriculture. This study develops an improved model for short-term precipitation forecasting by combining Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and Gated Recurrent Unit (GRU). Using precipitation data from January 1, 2019, to December 31, 2022, as a sample, the model capitalizes on CEEMDAN's superior signal decomposition capabilities and GRU's ability to capture nonlinear dynamic patterns in time series. To assess the model's effectiveness, comparisons were conducted with 12 benchmark models, including CEEMDAN-LSTM, EMD-GRU, EMD-LSTM, BI-LSTM, GRU, LSTM, and TCN. The results demonstrate that the CEEMDAN-GRU model achieves higher accuracy and stability in short-term precipitation forecasting. Leveraging an Adam optimizer with adaptive learning rate reduction enhances convergence and ensures reliable predictions, achieving an R²of 0.7915, MAE of 0.05382, and MSE of 0.09081.
降水预报对于灾害管理、城市交通和农业至关重要。本研究通过结合完全集成经验模态分解与自适应噪声(CEEMDAN)和门控循环单元(GRU),开发了一种用于短期降水预报的改进模型。以2019年1月1日至2022年12月31日的降水数据为样本,该模型利用CEEMDAN卓越的信号分解能力和GRU捕捉时间序列中非线性动态模式的能力。为评估该模型的有效性,与包括CEEMDAN-LSTM、EMD-GRU、EMD-LSTM、双向LSTM、GRU、LSTM和TCN在内的12个基准模型进行了比较。结果表明,CEEMDAN-GRU模型在短期降水预报中实现了更高的准确性和稳定性。利用具有自适应学习率降低功能的Adam优化器可增强收敛性并确保可靠的预测,实现了0.7915的R²、0.05382的平均绝对误差(MAE)和0.09081的均方误差(MSE)。