Suppr超能文献

通过ConvLSTM2D增强雷达回波外推用于降水临近预报

Enhancing Radar Echo Extrapolation by ConvLSTM2D for Precipitation Nowcasting.

作者信息

Naz Farah, She Lei, Sinan Muhammad, Shao Jie

机构信息

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.

Sichuan Artificial Intelligence Research Institute, Yibin 644000, China.

出版信息

Sensors (Basel). 2024 Jan 11;24(2):459. doi: 10.3390/s24020459.

Abstract

Precipitation nowcasting in real-time is a challenging task that demands accurate and current data from multiple sources. Despite various approaches proposed by researchers to address this challenge, models such as the interaction-based dual attention LSTM (IDA-LSTM) face limitations, particularly in radar echo extrapolation. These limitations include higher computational costs and resource requirements. Moreover, the fixed kernel size across layers in these models restricts their ability to extract global features, focusing more on local representations. To address these issues, this study introduces an enhanced convolutional long short-term 2D (ConvLSTM2D) based architecture for precipitation nowcasting. The proposed approach includes time-distributed layers that enable parallel Conv2D operations on each image input, enabling effective analysis of spatial patterns. Following this, ConvLSTM2D is applied to capture spatiotemporal features, which improves the model's forecasting skills and computational efficacy. The performance evaluation employs a real-world weather dataset benchmarked against established techniques, with metrics including the Heidke skill score (HSS), critical success index (CSI), mean absolute error (MAE), and structural similarity index (SSIM). ConvLSTM2D demonstrates superior performance, achieving an HSS of 0.5493, a CSI of 0.5035, and an SSIM of 0.3847. Notably, a lower MAE of 11.16 further indicates the model's precision in predicting precipitation.

摘要

实时降水临近预报是一项具有挑战性的任务,需要来自多个来源的准确和最新数据。尽管研究人员提出了各种方法来应对这一挑战,但诸如基于交互的双注意力长短期记忆网络(IDA-LSTM)等模型仍存在局限性,特别是在雷达回波外推方面。这些局限性包括更高的计算成本和资源需求。此外,这些模型中各层固定的内核大小限制了它们提取全局特征的能力,更多地侧重于局部表示。为了解决这些问题,本研究引入了一种基于增强型二维卷积长短期记忆网络(ConvLSTM2D)的降水临近预报架构。所提出的方法包括时间分布层,该层能够对每个图像输入进行并行的二维卷积操作,从而有效地分析空间模式。在此之后,应用ConvLSTM2D来捕捉时空特征,这提高了模型的预测能力和计算效率。性能评估采用了一个真实世界的天气数据集,并与既定技术进行基准比较,指标包括海德克技能得分(HSS)、临界成功指数(CSI)、平均绝对误差(MAE)和结构相似性指数(SSIM)。ConvLSTM2D表现出卓越的性能,HSS为0.5493,CSI为0.5035,SSIM为0.3847。值得注意的是,较低的MAE为11.16,进一步表明了该模型在预测降水方面的精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bd1/10819280/79746f51deb6/sensors-24-00459-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验