Suppr超能文献

基于多模态超声图像特征的列线图模型鉴别乳腺良恶性肿块的临床价值

Clinical Value of Nomogram Model based on Multimodality Ultrasound Image Characteristics Differentiating Benign and Malignant Breast Masses.

作者信息

Yan Jiaxin, Zheng Jianting, Chen Shurong, Zhao Jiahua, Han Yangfan, Liang Bo

机构信息

Department of Medical Ultrasound, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, Jiangsu Province, China.

出版信息

Curr Med Imaging. 2025;21:e15734056378619. doi: 10.2174/0115734056378619250722034152.

Abstract

INTRODUCTION

Finding a convenient, accurate, and non-invasive method to differentiate between benign and malignant breast masses is especially important for clinical practice, and this study aimed to explore the clinical value of Nomogram model based on multimodality ultrasound image characteristics and clinical baseline data for detecting benign and malignant breast masses.

METHODS

A retrospective analysis of the clinical data and ultrasound imaging characteristics of 132 patients with breast masses. Data were randomly divided into a training set (92 cases) and a validation set (40 cases) in a ratio of 7:3. Logistic regression was applied to the training set data to analyze risk factors related to malignant breast masses and to construct a Nomogram model. Clinical applicability of the model was evaluated and validated.

RESULTS

In training set, ROC cure analysis results showed that AUC of Nomogram model constructed with CA15-3, CA125, E, E, Ratio of Elastic Moduli, Elasticity Scoring, blurry boundaries, irregular shape, penetrating vessels, and stiff rim sign was 1.00 (95%CI: 0.99-1.00), Hosmer- Lemeshow goodness-of-fit test result showed predicted curve closely aligns with ideal curve, and DCA showed that Nomogram model exhibited high net benefits across multiple thresholds. The clinical applicability of the Nomogram model was also confirmed with consistent results in the validation set.

DISCUSSION

In this study, we constructed a Nomogram model using risk factors associated with malignant breast masses, and the model showed good clinical applicability in distinguishing benign and malignant breast masses. However, this study is a single-center study, and the sample size of the dataset is relatively small, which, to some extent, limits the breadth and depth of validation.

CONCLUSION

The Nomogram model built on multimodal ultrasound imaging features and clinical data demonstrates a strong discriminative ability for malignant breast masses, allowing patients to achieve a significant net benefit.

摘要

引言

寻找一种方便、准确且非侵入性的方法来区分乳腺良性和恶性肿块在临床实践中尤为重要,本研究旨在探讨基于多模态超声图像特征和临床基线数据的列线图模型在检测乳腺良恶性肿块中的临床价值。

方法

对132例乳腺肿块患者的临床资料和超声成像特征进行回顾性分析。数据按7:3的比例随机分为训练集(92例)和验证集(40例)。对训练集数据应用逻辑回归分析与乳腺恶性肿块相关的危险因素并构建列线图模型。对该模型的临床适用性进行评估和验证。

结果

在训练集中,ROC曲线分析结果显示,由CA15 - 3、CA125、E、E、弹性模量比值、弹性评分、边界模糊、形状不规则、穿入血管和僵硬边缘征构建的列线图模型的AUC为1.00(95%CI:0.99 - 1.00),Hosmer - Lemeshow拟合优度检验结果显示预测曲线与理想曲线紧密对齐,决策曲线分析(DCA)显示列线图模型在多个阈值下均表现出较高的净效益。列线图模型的临床适用性在验证集中也得到了一致结果的证实。

讨论

在本研究中,我们使用与乳腺恶性肿块相关的危险因素构建了列线图模型,该模型在区分乳腺良恶性肿块方面显示出良好的临床适用性。然而,本研究是一项单中心研究,数据集样本量相对较小,这在一定程度上限制了验证的广度和深度。

结论

基于多模态超声成像特征和临床数据构建的列线图模型对乳腺恶性肿块具有较强的鉴别能力,使患者能够获得显著的净效益。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验