Suppr超能文献

用于将随机对照试验中生存结局的治疗效果推广到目标人群的双重稳健估计量。

Doubly robust estimators for generalizing treatment effects on survival outcomes from randomized controlled trials to a target population.

作者信息

Lee Dasom, Yang Shu, Wang Xiaofei

机构信息

Department of Statistics, North Carolina State University, Raleigh, NC 27695, United States.

Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, United States.

出版信息

J Causal Inference. 2022;10(1):415-440. doi: 10.1515/jci-2022-0004. Epub 2022 Dec 9.

Abstract

In the presence of heterogeneity between the randomized controlled trial (RCT) participants and the target population, evaluating the treatment effect solely based on the RCT often leads to biased quantification of the real-world treatment effect. To address the problem of lack of generalizability for the treatment effect estimated by the RCT sample, we leverage observational studies with large samples that are representative of the target population. This article concerns evaluating treatment effects on survival outcomes for a target population and considers a broad class of estimands that are functionals of treatment-specific survival functions, including differences in survival probability and restricted mean survival times. Motivated by two intuitive but distinct approaches, i.e., imputation based on survival outcome regression and weighting based on inverse probability of sampling, censoring, and treatment assignment, we propose a semiparametric estimator through the guidance of the efficient influence function. The proposed estimator is doubly robust in the sense that it is consistent for the target population estimands if either the survival model or the weighting model is correctly specified and is locally efficient when both are correct. In addition, as an alternative to parametric estimation, we employ the nonparametric method of sieves for flexible and robust estimation of the nuisance functions and show that the resulting estimator retains the root- consistency and efficiency, the so-called rate-double robustness. Simulation studies confirm the theoretical properties of the proposed estimator and show that it outperforms competitors. We apply the proposed method to estimate the effect of adjuvant chemotherapy on survival in patients with early-stage resected non-small cell lung cancer.

摘要

在随机对照试验(RCT)参与者与目标人群之间存在异质性的情况下,仅基于RCT评估治疗效果往往会导致对真实世界治疗效果的量化产生偏差。为了解决RCT样本估计的治疗效果缺乏可推广性的问题,我们利用了具有代表性的大样本观察性研究。本文关注评估目标人群生存结局的治疗效果,并考虑了一类广泛的估计量,这些估计量是特定治疗生存函数的泛函,包括生存概率差异和受限平均生存时间。受两种直观但不同的方法启发,即基于生存结局回归的插补法和基于抽样、删失及治疗分配的逆概率加权法,我们在有效影响函数的指导下提出了一种半参数估计量。所提出的估计量具有双重稳健性,即如果生存模型或加权模型正确设定,它对于目标人群估计量是一致的,并且当两者都正确时是局部有效的。此外,作为参数估计的替代方法,我们采用筛法的非参数方法对干扰函数进行灵活且稳健的估计,并表明所得估计量保留了根一致性和效率,即所谓的速率双重稳健性。模拟研究证实了所提出估计量的理论性质,并表明它优于其他竞争者。我们应用所提出的方法来估计辅助化疗对早期切除的非小细胞肺癌患者生存的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6fa/10457100/0f0bb8cd1847/nihms-1875530-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验