Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA.
Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
Stat Med. 2022 Oct 15;41(23):4511-4531. doi: 10.1002/sim.9523. Epub 2022 Jul 18.
Two important considerations in clinical research studies are proper evaluations of internal and external validity. While randomized clinical trials can overcome several threats to internal validity, they may be prone to poor external validity. Conversely, large prospective observational studies sampled from a broadly generalizable population may be externally valid, yet susceptible to threats to internal validity, particularly confounding. Thus, methods that address confounding and enhance transportability of study results across populations are essential for internally and externally valid causal inference, respectively. These issues persist for another problem closely related to transportability known as data-fusion. We develop a calibration method to generate balancing weights that address confounding and sampling bias, thereby enabling valid estimation of the target population average treatment effect. We compare the calibration approach to two additional doubly robust methods that estimate the effect of an intervention on an outcome within a second, possibly unrelated target population. The proposed methodologies can be extended to resolve data-fusion problems that seek to evaluate the effects of an intervention using data from two related studies sampled from different populations. A simulation study is conducted to demonstrate the advantages and similarities of the different techniques. We also test the performance of the calibration approach in a motivating real data example comparing whether the effect of biguanides vs sulfonylureas-the two most common oral diabetes medication classes for initial treatment-on all-cause mortality described in a historical cohort applies to a contemporary cohort of US Veterans with diabetes.
在临床研究中,有两个重要的考虑因素是内部和外部有效性的适当评估。虽然随机临床试验可以克服内部有效性的许多威胁,但它们可能容易受到外部有效性的影响。相反,从广泛具有代表性的人群中抽取的大型前瞻性观察性研究可能具有外部有效性,但容易受到内部有效性的威胁,特别是混杂。因此,解决混杂和增强研究结果在人群中的可移植性的方法对于内部和外部有效性的因果推理分别是至关重要的。这些问题与另一个与可移植性密切相关的问题,即数据融合,有关。我们开发了一种校准方法来生成平衡权重,以解决混杂和抽样偏差问题,从而能够有效估计目标人群的平均治疗效果。我们将校准方法与另外两种双稳健方法进行了比较,这两种方法在第二个可能不相关的目标人群中估计干预对结果的影响。所提出的方法可以扩展到解决数据融合问题,这些问题旨在使用来自不同人群的两个相关研究的数据来评估干预的效果。进行了一项模拟研究,以展示不同技术的优势和相似之处。我们还在一个有说服力的真实数据示例中测试了校准方法的性能,该示例比较了二甲双胍与磺脲类药物(用于初始治疗的两种最常见的口服糖尿病药物类别)对历史队列中描述的全因死亡率的影响是否适用于美国退伍军人糖尿病的当代队列。