Wang Shaojie, Gao Min, Qin Yinze, Zhang Sijie, Tan Lei, Dove Martin T
Institute of Atomic and Molecular Physics Sichuan University Chengdu Sichuan 610065 People's Republic of China.
CrystalMaker Software Ltd Centre for Innovation and Enterprise Oxford University Begbroke Science Park Woodstock Road Begbroke Oxfordshire OX5 1PF United Kingdom.
J Appl Crystallogr. 2025 Jul 22;58(Pt 4):1269-1287. doi: 10.1107/S1600576725004340. eCollection 2025 Aug 1.
The use of Hermite functions to describe pair distribution functions (PDFs) from total scattering data was previously proposed by Krylov & Vvedenskii [ (1995), , 683-687]. Hermite functions have a suitable form for describing both the total scattering data and the PDF, and have the useful feature that they are eigenfunctions of the Fourier transform operation. We demonstrate that, by fitting Hermite functions to total scattering data, it is possible to take into account the effects of experimental resolution when deriving the PDF from the scattering data. This is particularly advantageous for neutron time-of-flight data, where different banks of detectors have different resolution functions and the resolution widths vary with the size of the scattering vector. A number of technical points are discussed and illustrated using examples of synthetic data, including both amorphous and crystalline materials. These include a solution to the problem of handling the sharp Bragg peaks, and how to scale the scattering function and PDF to match the scale of the Hermite functions. A number of examples using real scattering data, both synchrotron X-ray and spallation neutron data, are also shown. To account for uncertainties in the levels of the scattering functions, we have modified a method of Billinge & Farrow [ (2013), , 454202] to remove backgrounds by fitting with low-order orthogonal (Chebyshev) functions.
先前,Krylov和Vvedenskii [(1995),,683 - 687] 提出使用埃尔米特函数来描述总散射数据中的对分布函数(PDF)。埃尔米特函数具有适合描述总散射数据和PDF的形式,并且具有它们是傅里叶变换运算的本征函数这一有用特性。我们证明,通过将埃尔米特函数拟合到总散射数据,在从散射数据推导PDF时能够考虑实验分辨率的影响。这对于中子飞行时间数据尤为有利,其中不同的探测器组具有不同的分辨率函数,并且分辨率宽度随散射矢量的大小而变化。使用合成数据的示例(包括非晶态和晶态材料)讨论并说明了许多技术要点。这些要点包括处理尖锐布拉格峰问题的解决方案,以及如何缩放散射函数和PDF以匹配埃尔米特函数的尺度。还展示了一些使用实际散射数据的示例,包括同步加速器X射线数据和散裂中子数据。为了考虑散射函数水平的不确定性,我们修改了Billinge和Farrow [(2013),,454202] 的一种方法,通过用低阶正交(切比雪夫)函数拟合来去除背景。